
Version 4.1.2 for Mainframes Programming Guide

This document applies to Natural Version 4.1.2 for Mainframes and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release
notes or new editions.

© Copyright Software AG 1979 - 2003.
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective
owners.

Table of Contents
................ 1Programming Guide - Overview
................ 1Programming Guide - Overview
............... 3Reporting Mode or Structured Mode
............... 3Reporting Mode or Structured Mode
.................. 3General Information
.................. 3Reporting Mode
.................. 3Structured Mode
................ 3Setting the Programming Mode
.................. 4Functional Differences
............ 5Closing a Processing Loop in Reporting Mode
............ 5Closing a Processing Loop in Structured Mode
.................. 6Database Reference
................. 8Defining Names and Fields
................. 8Defining Names and Fields
............ 9Use and Structure of DEFINE DATA Statement
............ 9Use and Structure of DEFINE DATA Statement
............... 9Use of DEFINE DATA Statement
........... 9Defining Fields within a DEFINE DATA Statement
.............. 10Defining Fields in a Separate Data Area
......... 10Structuring a DEFINE DATA Statement Using Level Numbers
............ 10Structuring and Grouping Your Definitions
.............. 11Level Numbers in View Definitions
............... 11Level Numbers in Field Groups
............... 11Level Numbers in Redefinitions
............ 11Example of Level Numbers in Redefinition
.................. 13User-Defined Variables
.................. 13User-Defined Variables
............... 13Defining User-Defined Variables
............... 13Names of User-Defined Variables
................ 13Length of Variable Names
............... 13Limitations of Variable Names
............. 13Characters Allowed in Variable Names
.............. 14First Character of Variable Names
..... 14Special Considerations Regarding the Case of Characters in Variable Names
............ 15Format and Length of User-Defined Variables
.............. 15Examples of User-Defined Variables
.................. 16User-Defined Constants
.................. 16User-Defined Constants
.................. 16Numeric Constants
................. 16Alphanumeric Constants
................. 17Date and Time Constants
................. 18Hexadecimal Constants
................... 18Logical Constants
................. 19Floating Point Constants
.................. 19Attribute Constants
................. 19Defining Named Constants
.............. 21Initial Values (and the RESET Statement)
.............. 21Initial Values (and the RESET Statement)
........... 21Assigning Initial Values to a User-Defined Variable
.................. 22Default Initial Values
................... 22RESET Statement
.................... 23Redefining Fields
................... 23Redefining Fields

iCopyright © Software AG 2003

Table of ContentsProgramming Guide - Overview

............. 23Using the REDEFINE Option of DEFINE DATA

............ 24Example Program Illustrating the Use of a Redefinition

....................... 25Arrays

....................... 25Arrays

.................... 25Defining Arrays

................... 26Initial Values for Arrays

............ 26Assigning Initial Values to One-Dimensional Arrays

............ 26Assigning Initial Values to Two-Dimensional Arrays

.................. 27Assigning the Same Value

................. 28Assigning Different Values

.................. 29A Three-Dimensional Array

............... 30Arrays as Part of a Larger Data Structure

.................... 31Database Arrays

............. 31Using Arithmetic Expressions in Index Notation

................. 32Arithmetic Support for Arrays

................ 32Examples of Array Arithmetics

...................... 33Data Blocks

...................... 33Data Blocks

................. 33Example of Data Block Usage

................... 33Defining Data Blocks

.................... 34Block Hierarchies

................ 36Accessing Data in an Adabas Database

................ 36Accessing Data in an Adabas Database

................. 37Data Definition Modules - DDMs

................. 37Data Definition Modules - DDMs

................. 37Use of Data Definition Modules

.................. 38Listing/Displaying DDMs

................... 38Components of a DDM

..................... 40Database Arrays

..................... 40Database Arrays

................... 40Multiple-Value Fields

.................... 40Periodic Groups

............ 41Referencing Multiple-Value Fields and Periodic Groups

.............. 42Multiple-Value Fields Within Periodic Groups

........... 43Referencing Multiple-Value Fields Within Periodic Groups

............. 43Referencing the Internal Count of a Database Array

.................... 44DEFINE DATA Views

................... 44DEFINE DATA Views

................... 44Use of Database Views

.................. 44Defining a Database View

.................. 46Statements for Database Access

................. 46Statements for Database Access

.................... 46READ Statement

.................. 46Use of READ Statement

................ 46Basic Syntax of READ Statement

.............. 48Limiting the Number of Records to be Read

................. 48STARTING/ENDING Clauses

.................... 48WHERE Clause

............... 50Further Example of READ Statement

.................... 50FIND Statement

.................. 50Use of FIND Statement

................ 50Basic Syntaxof FIND Statement

............. 51Limiting the Number of Records to be Processed

.................... 51WHERE Clause

................. 51Example of WHERE Clause

............... 52IF NO RECORDS FOUND Condition

Copyright © Software AG 2003ii

Programming Guide - OverviewTable of Contents

............. 52Example of IF NO RECORDS FOUND Clause

............... 52Further Examples of FIND Statement

.................. 53HISTOGRAM Statement

................ 53Use of HISTOGRAM Statement

............... 53Syntax of HISTOGRAM Statement

.............. 53Limiting the Number of Values to be Read

................. 54STARTING/ENDING Clauses

.................... 54WHERE Clause

............... 54Example of HISTOGRAM Statement

..................... 55Multi-Fetch Clause

.................... 55Multi-Fetch Clause

.................. 55Multi-Fetch on Mainframes

.............. 55Use of Multi-Fetch Feature on Mainframes

............... 56Considerations for Multi-Fetch Usage

................. 56Size of the Multi-Fetch Buffer

.................. 57Support of TEST DBLOG

............... 57Multi-Fetch under Windows and UNIX

................... 59Database Processing Loops

.................. 59Database Processing Loops

............... 59Creation of Database Processing Loops

................. 60Hierarchies of Processing Loops

............... 60Example of Processing Loop Hierarchy

........... 62Example of Nested FIND Loops Accessing the Same File

........... 63Further Examples of Nested READ and FIND Statements

............... 64Database Update - Transaction Processing

............... 64Database Update - Transaction Processing

.................... 64Logical Transaction

................. 65Example of STORE Statement

.................... 65Record Hold Logic

.................. 65Example of GET Statement

.................. 66Backing Out a Transaction

.................. 66Restarting a Transaction

........... 66Example of Using Transaction Data to Restart a Transaction

............... 68Selecting Records Using ACCEPT/REJECT

............... 68Selecting Records Using ACCEPT/REJECT

............. 68Statements Usable with ACCEPT and REJECT

................. 68Example of ACCEPT Statement

.......... 69Logical Condition Criteria in ACCEPT/REJECT Statements

............ 69Example of ACCEPT Statement with AND Operator

............. 69Example of REJECT Statement with OR Operator

............ 70Further Examples of ACCEPT and REJECT Statements

................ 71AT START/END OF DATA Statements

................ 71AT START/END OF DATA Statements

................ 71AT START OF DATA Statement

................. 71AT END OF DATA Statement

........ 71Example of AT START OF DATA and AT END OF DATA Statements

........ 72Further Examples of AT START OF DATA and AT END OF DATA

...................... 73Output of Data

..................... 73Output of Data

................... 74Layout of an Output Page

................... 74Layout of an Output Page

............... 74Statements Influencing a Report Layout

.................. 74General Layout Example

................. 76Statements DISPLAY and WRITE

................. 76Statements DISPLAY and WRITE

................... 76DISPLAY Statement

iiiCopyright © Software AG 2003

Table of ContentsProgramming Guide - Overview

.................... 77WRITE Statement

................. 77Example of DISPLAY Statement

................. 78Example of WRITE Statement

............. 78Column Spacing - SF Parameter and nX Notation

.................. 79Tab Setting - nT Notation

................. 80Line Advance - Slash Notation

............. 80Example of Line Advance in DISPLAY Statement

............. 81Example of Line Advance in WRITE Statement

............ 81Further Examples of DISPLAY and WRITE Statements

.......... 82Index Notation for Multiple-Value Fields and Periodic Groups

........... 82Index Notation for Multiple-Value Fields and Periodic Groups

................... 82Use of Index Notation

............. 82Example of Index Notation in DISPLAY Statement

............. 83Example of Index Notation in WRITE Statement

.................. 84Page Titles and Page Breaks

.................. 84Page Titles and Page Breaks

.................... 84Default Page Title

............... 84Suppress Page Title - NOTITLE Option

........... 85Define Your Own Page Title - WRITE TITLE Statement

................. 85Specifying Text for Your Title

............... 85Specifying Empty Lines after the Title

............... 85Title Justification and/or Underlining

................. 86Logical Page and Physical Page

.................. 87Page Size - PS Parameter

..................... 88Page Advance

.............. 88Page Advance Controlled by EJ Parameter

......... 88Page Advance Controlled by EJECT or NEWPAGE Statements

.............. 89Eject/New Page when less than n Line Left

................... 89New Page with Title

.............. 90Page Trailer - WRITE TRAILER Statement

.................. 90Specifying a Page Trailer

................. 90Considering Logical Page Size

............. 90Page Trailer Justification and/or Underlining

................. 91AT TOP OF PAGE Statement

................. 91AT END OF PAGE Statement

.................... 91Further Examples
Examples of WRITE TITLE, WRITE TRAILER, AT TOP OF PAGE, AT END OF PAGE and SKIP

..................... 91Statements

................. 92Example of NOTITLE Option

............. 92Example of NEWPAGE and EJECT Statements

..................... 93Column Headers

..................... 93Column Headers

.................. 93Default Column Headers

............ 93Suppress Default Column Headers - NOHDR Option

................ 94Define Your Own Column Headers

................ 94Combining NOTITLE and NOHDR

.............. 94Centering of Column Headers - HC Parameter

.............. 95Width of Column Headers - HW Parameter

............ 95Filler Characters for Headers - Parameters FC and GC

.......... 96Underlining Character for Titles and Headers - UC Parameter

.............. 97Suppressing Column Headers - Slash Notation

................ 98Further Examples of Column Headers

.............. 99Parameters to Influence the Output of Fields

............... 99Parameters to Influence the Output of Fields

............. 99Overview of Field-Output-Relevant Parameters

................ 99Leading Characters - LC Parameter

Copyright © Software AG 2003iv

Programming Guide - OverviewTable of Contents

................ 100Insertion Characters - IC Parameter

................ 100Trailing Characters - TC Parameter

............... 100Output Length - AL and NL Parameters

................. 101Sign Position - SG Parameter

............... 101Example Program without Parameters

.......... 102Example Program with Parameters AL, NL, LC, IC and TC

................. 102Identical Suppress - IS Parameter

............... 103Example Program without IS Parameter

............... 103Example Program with IS Parameter

.................. 103Zero Printing - ZP Parameter

............... 104Empty Line Suppression - ES Parameter

............ 104Example Program without Parameters ZP and ES

............. 105Example Program with Parameters ZP and ES

............ 105Further Examples of Field-Output-Relevant Parameters

.................. 106Edit Masks - EM Parameter

.................. 106Edit Masks - EM Parameter

................... 106Use of EM Parameter

................. 106Edit Masks for Numeric Fields

................ 107Edit Masks for Alphanumeric Fields

.................... 107Length of Fields

................ 107Edit Masks for Date and Time Fields

................... 107Examples of Edit Masks

.............. 108Example Program without EM Parameters

............... 108Example Program with EM Parameters

................. 109Further Examples of Edit Masks

..................... 110Vertical Displays

..................... 110Vertical Displays

.................. 110Creating Vertical Displays

................ 110Combining DISPLAY and WRITE

................... 111Tab Notation - T*field

................... 112Positioning Notation x/y

.................. 113DISPLAY VERT Statement

............... 113DISPLAY VERT without AS Clause

............. 114DISPLAY VERT AS CAPTIONED and HORIZ

.................. 115DISPLAY VERT AS text

.............. 116DISPLAY VERT AS text CAPTIONED

................... 116Tab Notation P*field

.......... 117Further Example of DISPLAY VERT with WRITE Statement

...................... 118Object Types

...................... 118Object Types

............. 119What Types of Programming Objects Are There?

.............. 119What Types of Programming Objects Are There?

................. 119Types of Programming Objects

................ 119Creating and Maintaining Objects

...................... 120Data Areas

...................... 120Data Areas

.................... 120Use of Data Areas

.................... 120Local Data Area

.................... 121Global Data Area

.............. 122When are Global Data Areas Initialized?

................... 122Parameter Data Area

........ 122Parameter Defined within DEFINE DATA PARAMETER Statement

.............. 123Parameter Defined in Parameter Data Area

............... 124Programs, Subprograms and Subroutines

............... 124Programs, Subprograms and Subroutines

................. 124A Modular Application Structure

vCopyright © Software AG 2003

Table of ContentsProgramming Guide - Overview

................ 124Multiple Levels of Invoked Objects

...................... 125Program

.............. 126Program Invoked with FETCH RETURN

................. 127Program Invoked with FETCH

...................... 127Subroutine

.................... 128Inline Subroutine

................... 129External Subroutine

............... 129Data Available to an Inline Subroutine

.............. 130Data Available to an External Subroutine

..................... 130Subprogram

................ 130Data Available to a Subprogram

............... 131Processing Flow when Invoking a Routine

........................ 133Maps

....................... 133Maps

................... 133Benefits of Using Maps

..................... 133Types of Maps

..................... 134Creating Maps

................ 134Starting/Stopping Map Processing

...................... 135Helproutines

...................... 135Helproutines

..................... 135Invoking Help

................... 135Specifying Helproutines

.............. 136Programming Considerations for Helproutines

................ 136Passing Parameters to Helproutines

.................... 137Equal Sign Option

..................... 137Array Indices

.................... 137Help as a Window

................ 139Multiple Use of Source Code - Copycode

............... 139Multiple Use of Source Code - Copycode

.................... 139Use of Copycode

................... 139Processing of Copycode

................ 140Documenting Natural Objects - Text

................ 140Documenting Natural Objects - Text

.................... 140Use of Text Objects

..................... 140Writing Text

............... 141Creating Event Driven Applications - Dialog

............... 141Creating Event Driven Applications - Dialog

.............. 142Creating Component Based Applications - Class

.............. 142Creating Component Based Applications - Class

................. 143Using Non-Natural Files - Resource

................. 143Using Non-Natural Files - Resource

.................. 144Further Programming Aspects

.................. 144Further Programming Aspects

.................... 145END/STOP Statements

................... 145END/STOP Statements

................ 145End of Program - END Statement

................ 145End of Application - STOP Statement

................ 146Conditional Processing - IF Statement

................ 146Conditional Processing - IF Statement

.................. 146Structure of IF Statement

.................. 146Example of IF Statement

................... 147Nested IF Statements

................. 147Example of Nested IF Statements

................. 148Further Example of IF Statement

..................... 149Loop Processing

..................... 149Loop Processing

Copyright © Software AG 2003vi

Programming Guide - OverviewTable of Contents

.................. 149Use of Processing Loops

.................. 149Limiting Database Loops

.............. 150Possible Ways of Limiting Database Loops

................... 150LT Session Parameter

.................... 150LIMIT Statement

.................... 150Limit Notation

.................. 150Priority of Limit Settings

............ 150Limiting Non-Database Loops - REPEAT Statement

................. 151Example of REPEAT Statement

............ 152Terminating a Processing Loop - ESCAPE Statement

................... 152Loops Within Loops

................ 152Example of Nested FIND Statements

............... 153Referencing Statements within a Program

.............. 154Example of Referencing with Line Numbers

............... 154Example with Statement Reference Labels

..................... 156Control Breaks

..................... 156Control Breaks

................... 156Use of Control Breaks

................... 156AT BREAK Statement

.............. 156Control Break Based on a Database Field

............ 158Control Break Based on a User-Defined Variable

................. 159Multiple Control Break Levels

.................. 161Automatic Break Processing

........... 162Example of System Functions with AT BREAK Statement

.............. 163BEFORE BREAK PROCESSING Statement

........... 163Example of BEFORE BREAK PROCESSING Statement

...... 164User-Initiated Break Processing - PERFORM BREAK PROCESSING Statement

........... 165Example of PERFORM BREAK PROCESSING Statement

.............. 166Further Example of AT BREAK Statement

..................... 167Data Computation

.................... 167Data Computation

.......... 167Statements Used for Computing Data or Transferring Values

................... 167COMPUTE Statement

................ 168Statements MOVE and COMPUTE

........... 169Statements ADD, SUBTRACT, MULTIPLY and DIVIDE

.......... 169Example of MOVE, SUBTRACT and COMPUTE Statements

................... 170COMPRESS Statement

............. 170Example of COMPRESS and MOVE Statements

................ 171Example of COMPRESS Statement

................... 172Mathematical Functions

........ 173Further Examples of COMPUTE, MOVE and COMPRESS Statements

................ 174System Variables and System Functions

................ 174System Variables and System Functions

.................... 174System Variables

.................... 174System Functions

............ 175Example of System Variables and System Functions

............... 176Further Examples of System Variables

............... 176Further Examples of System Functions

........................ 177Stack

....................... 177Stack

................... 177Use of Natural Stack

.................... 177Stack Processing

.................. 178Placing Data on the Stack

................... 178STACK Parameter

................... 178STACK Statement

................. 178FETCH and RUN Statements

viiCopyright © Software AG 2003

Table of ContentsProgramming Guide - Overview

.................... 178Clearing the Stack

.................. 179Processing of Date Information

.................. 179Processing of Date Information

............ 179Edit Masks for Date Fields and Date System Variables

............. 179Default Edit Mask for Date - DTFORM Parameter

.......... 180Date Format for Alphanumeric Representation - DF Parameter

............ 181Examples of DF Parameter with WRITE Statements

............ 181Example of DF Parameter with MOVE Statement

............ 181Example of DF Parameter with STACK Statement

............ 182Example of DF Parameter with INPUT Statement

.............. 182Date Format for Output - DFOUT Parameter

.............. 183Date Format for Stack - DFSTACK Parameter

............... 184Year Sliding Window - YSLW Parameter

.............. 185Combinations of DFSTACK and YSLW

........... 187Date Format for Default Page Title - DFTITLE Parameter

................ 188Designing User Interfaces - Overview

................ 188Designing User Interfaces - Overview

....................... 189<Untitled>

..................... 189Screen Design

........... 189Control of Function-Key Lines - Terminal Command %Y

................. 189Format of Function-Key Lines

................ 190Positioning of Function-Key Lines

................... 192Cursor-Sensitivity

........... 192Control of the Message Line - Terminal Command %M

................. 192Positioning the Message Line

.................. 193Message Line Protection

................... 193Message Line Color

............ 193Assigning Colors to Fields - Terminal Command %=

............... 194Outlining - Terminal Command %D=B

............. 195Statistics Line/Infoline - Terminal Command %X

.................... 195Statistics Line

...................... 195Infoline

...................... 196Windows

................... 196What is a Window?

................. 198DEFINE WINDOW Statement

................. 199INPUT WINDOW Statement

................. 202Standard/Dynamic Layout Maps

.................. 202Standard Layout Maps

.................. 202Dynamic Layout Maps

.................. 203Multilingual User Interfaces

.................... 203Language Codes

.............. 204Defining the Language of a Natural Object

................. 205Defining the User Language

................ 205Referencing Multilingual Objects

..................... 207Programs

.................... 207Error Messages

............... 207Edit Masks for Date and Time Fields

................. 207Skill-Sensitive User Interfaces

...................... 209Dialog Design

..................... 209Dialog Design

.................. 209Field-Sensitive Processing

............... 209*CURS-FIELD and POS(field-name)

.................. 210Simplifying Programming

................... 210System Function POS

.................. 211Line-Sensitive Processing

................ 211System Variable *CURS-LINE

Copyright © Software AG 2003viii

Programming Guide - OverviewTable of Contents

................. 212Column-Sensitive Processing

................. 212System Variable *CURS-COL

................ 212Processing Based on Function Keys

................. 212System Variable *PF-KEY

.............. 213Processing Based on Function-Key Names

................. 213System Variable *PF-NAME

.............. 213Processing Data Outside an Active Window

.................. 214System Variable *COM

.................. 214Example Usage of *COM

......... 215Positioning the Cursor to *COM - the %T* Terminal Command

.................. 216Copying Data from a Screen

............... 216Terminal Commands %CS and %CC

.......... 216Selecting a Line from Report Output for Further Processing

............... 218Statements REINPUT/REINPUT FULL

.................. 219Object-Oriented Processing

................. 219Natural Command Processor

.................. 221Keywords and Reserved Words

.................. 221Keywords and Reserved Words

................. 221Performing a Keyword Check

............ 221Alphabetical List of Keywords and Reserved Words

................ 221Symbols and Special Characters

...................... 225- A -

...................... 226- B -

...................... 227- C -

...................... 229- D -

...................... 230- E -

...................... 232- F -

...................... 233- G -

...................... 234- H -

...................... 235- I -

...................... 236- J -

...................... 236- K -

...................... 237- L -

...................... 239- M -

...................... 239- N -

...................... 241- O -

...................... 241- P -

...................... 243- Q -

...................... 243- R -

...................... 244- S -

...................... 246- T -

...................... 248- U -

...................... 248- V -

...................... 249- W -

...................... 249- X -

...................... 249- Y -

...................... 250- Z -

....................... 251Natural X

...................... 251Natural X

................... 252Introduction to NaturalX

................... 252Introduction to NaturalX

.................... 252Why NaturalX?

.................. 252Programming Techniques

................. 253Object-Based Programming

.................... 253Defining Classes

................... 253Defining Interfaces

ixCopyright © Software AG 2003

Table of ContentsProgramming Guide - Overview

................... 253Interface Inheritance

................. 255Developing NaturalX Applications

................. 255Developing NaturalX Applications

................... 255Using the Class Builder

.................... 255Defining Classes

................ 255Creating a Natural Class Module

................... 255Specifying a Class

................... 256Defining an Interface

............. 256Assigning an Object Data Variable to a Property

............... 256Assigning a Subprogram to a Method

.................. 256Implementing Methods

.................. 258Using Classes and Objects

.................. 259Defining Object Handles

................. 259Creating an Instance of a Class

.............. 259Invoking a Particular Method of an Object

................... 259Accessing Properties

................... 261Sample Application

................. 262Distributing NaturalX Applications

................. 262Distributing NaturalX Applications

...................... 262General

............... 262Internal, External and Local Classes

................ 263Globally Unique Identifiers - GUIDs

.................. 263Using the Class Builder

Copyright © Software AG 2003x

Programming Guide - OverviewTable of Contents

Programming Guide - Overview
This documentation applies to all platforms on which Natural can be used. It provides basic information on
various aspects of programming with Natural. You should be familiar with this information before you start to
write Natural applications. See als Natural for Mainframes - Tutorial. This tutorial contains a series of sessions
which introduce you to some of the basics of Natural programming.

Reporting Mode or
Structured Mode

Describes the differences between the two Natural programming modes.
Generally, it is recommended to use structured mode exclusively, because
it provides for more clearly structured applications. Therefore all
explanations and examples in this documentation refer to structured mode.
Any peculiarities of reporting mode will not be taken into consideration.

Defining Names and Fields Describes how you define the fields you wish to use in a program.

Accessing Data in an Adabas
Database

Describes various aspects of using Natural to access data in an Adabas
database.
On principle, the features and examples contained in this document also
apply to other database management systems supported by Natural.
Differences, if any, are described in the Natural Statements documentation
or in the Natural Parameter Reference documentation.

Output of Data Discusses various aspects of how you can control the format of an output
report created with Natural, that is, the way in which the data are displayed.

Object Types Within an application, you can use several types of programming objects to
achieve an efficient application structure. This document discusses the
various types of Natural programming objects, such as data areas,
programs, subprograms, subroutines, helproutines, maps.

Further Programming
Aspects

Discusses various other aspects of programming with Natural.

Designing User Interfaces Provides information on components of Natural which you can use to
design the user interfaces of your applications.

Keywords and Reserved
Words

This document contains a list of all keywords and words that are reserved
in the Natural programming language.

NaturalX Describes how to develop and distribute NaturalX applications on
Windows platforms.
On mainframe and UNIX platforms, you can use NaturalX to apply a
component-based programming style. However, on these platforms the
components cannot be distributed and can only run in a local Natural
session. Therefore, only the section Developing NaturalX Applications is
relevant.

Example Programs

This documentation contains several examples of Natural programs, as well as references to further example
programs not shown in the documentation.

All these programs are also provided in source-code form in the Natural library "SYSEXPG". (The programs are
all written in structured mode.)

1Copyright © Software AG 2003

Programming Guide - OverviewProgramming Guide - Overview

Further example programs of using Natural statements are provided in the Natural library "SYSEXRM".

Please ask your Natural administrator about the availability of these libraries at your site.

The example programs use data from the files "EMPLOYEES" and "VEHICLES", which are supplied by
Software AG for demonstration purposes.

Copyright © Software AG 20032

Programming Guide - OverviewProgramming Guide - Overview

Reporting Mode or Structured Mode
The following topics are covered below:

General Information
Setting the Programming Mode
Functional Differences
Closing a Processing Loop in Reporting Mode
Closing a Processing Loop in Structured Mode
Database Reference

General Information
Natural offers two ways of programming:

reporting mode
structured mode

Generally, it is recommended to use structured mode exclusively, because it provides for more clearly structured
applications.

Reporting Mode

Reporting mode is only useful for the creation of adhoc reports and small programs which do not involve
complex data and/or programming constructs. (If you decide to write a program in reporting mode, be aware that
small programs may easily become larger and more complex.)

Structured Mode

Structured mode is intended for the implementation of complex applications with a clear and well-defined
program structure. The major benefits of structured mode are:

The programs have to be written in a more structured way and are therefore easier to read and consequently
easier to maintain.
As all fields to be used in a program have to be defined in one central location (instead of being scattered all
over the program, as is possible in reporting mode), overall control of the data used is much easier.

With structured mode, you also have to make more detail planning before the actual programs can be coded,
thereby avoiding many programming errors and inefficiencies.

Setting the Programming Mode
The default programming mode is set by the Natural administrator. You can change the mode by using the
system command GLOBALS and the session parameter SM:

GLOBALS SM=ON Structured Mode

GLOBALS SM=OFF Reporting Mode

3Copyright © Software AG 2003

Reporting Mode or Structured ModeReporting Mode or Structured Mode

Functional Differences
The major functional differences between reporting mode and structured mode are summarized below:

The syntax related to closing loops and functional blocks differs in the two modes.
In structured mode, every loop or logical construct must be explicitly closed with a corresponding END-...
statement. Thus, it becomes immediately clear, which loop/logical constructs ends where.
Reporting mode uses (CLOSE) LOOP and DO ... DOEND statements for this purpose.
END-... statements (except END-DEFINE, END-DECIDE and END-SUBROUTINE) cannot be used in
reporting mode, while LOOP and DO/DOEND statements cannot be used in structured mode.
In reporting mode, you can use database fields without having to define them in a DEFINE DATA
statement; also, you can define user-defined variables anywhere in a program, which means that they can be
scattered all over the program.
In structured mode, all data elements to be used have to be defined in one central location (either in the
DEFINE DATA statement at the beginning of the program, or in a data area outside the program).

The Natural Statements documentation provides separate syntax diagrams for each mode-sensitive statement.

The two examples below illustrate the differences between the two modes in constructing processing loops and
logical conditions.

Reporting Mode Example:

The reporting mode example uses the statements DO and DOEND to mark the beginning and end of the
statement block that is based on the AT END OF DATA condition. The END statement closes all active
processing loops.

 READ EMPLOYEES BY PERSONNEL-ID
 DISPLAY NAME BIRTH POSITION
 AT END OF DATA
 DO
 SKIP 2
 WRITE / ’LAST SELECTED:’ OLD(NAME)
 DOEND
 END

Structured Mode Example:

The structured mode example uses an END-ENDDATA statement to close the AT END OF DATA condition,
and an END-READ statement to close the READ loop. The result is a more clearly structured program in which
you can see immediately where each construct begins and ends:

 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 BIRTH
 2 POSITION
 END-DEFINE
 READ MYVIEW BY PERSONNEL-ID
 DISPLAY NAME BIRTH POSITION
 AT END OF DATA
 SKIP 2
 WRITE / ’LAST SELECTED:’ OLD(NAME)
 END-ENDDATA
 END-READ
 END

Copyright © Software AG 20034

Reporting Mode or Structured ModeFunctional Differences

Closing a Processing Loop in Reporting Mode
The statements END, LOOP (or CLOSE LOOP) or SORT may be used to close a processing loop.

The LOOP statement can be used to close more than one loop, and the END statement can be used to close all
active loops. These possibilities of closing several loops with a single statement constitute a basic difference to
structured mode.

A SORT statement closes all processing loops and initiates another processing loop.

Example 1 - LOOP:

 FIND ...
 FIND ...
 ...
 ...
 LOOP (closes inner FIND loop)
 LOOP (closes outer FIND loop)
 ...
 ...

Example 2 - END:

 FIND ...
 FIND ...
 ...
 ...
 END (closes all loops and ends processing)

Example 3 - SORT:

 FIND ...
 FIND ...
 ...
 ...
 SORT ... (closes all loops,initiates loop)
 ...
 END (closes SORT loop and ends processing)

Closing a Processing Loop in Structured Mode
Structured mode uses a specific loop-closing statement for each processing loop. Also, the END statement does
not close any processing loop. The SORT statement must be preceded by an END-ALL statement, and the SORT
loop must be closed with an END-SORT statement.

Example 1 - FIND:

 FIND ...
 FIND ...
 ...
 ...
 END-FIND (closes inner FIND loop)
 END-FIND (closes outer FIND loop)
 ...

Example 2 - READ:

5Copyright © Software AG 2003

Closing a Processing Loop in Reporting ModeReporting Mode or Structured Mode

 READ ...
 AT END OF DATA
 ...
 END-ENDDATA
 ...
 END-READ (closes READ loop)
 ...
 ...
 END

Example 3 - SORT:

 READ ...
 FIND ...
 ...
 ...
 END-ALL (closes all loops)
 SORT (opens loop)
 ...
 ...
 END-SORT (closes SORT loop)
 END

Database Reference
In reporting mode, database fields and DDMs may be referenced without having been defined in a data area.

Reporting Mode:

In structured mode, however, each database field to be used must be specified in a DEFINE DATA statement (as
described in Defining Fields and Database Access).

Structured Mode:

Copyright © Software AG 20036

Reporting Mode or Structured ModeDatabase Reference

7Copyright © Software AG 2003

Database ReferenceReporting Mode or Structured Mode

Defining Names and Fields
This document describes how you define the fields you wish to use in a program. These fields can be database
fields and user-defined fields.

It contains information that applies to all fields in general and to user-defined fields in particular.

The following topics are covered:

Use and Structure of DEFINE DATA Statement
User-Defined Variables
User-Defined Constants
Initial Values and the RESET Statement
Redefining Fields
Arrays
Data Blocks

Please note that only the major options of the DEFINE DATA statement are discussed here. Further options are
described in the Natural Statements documentation.

The particulars of database fields are described in Database Access.

Copyright © Software AG 20038

Defining Names and FieldsDefining Names and Fields

Use and Structure of DEFINE DATA
Statement
The first statement in a Natural program must always be a DEFINE DATA statement which is used to define
fields for use in a program.

The following topics are covered:

Use of DEFINE DATA Statement
Defining Fields within a DEFINE DATA Statement
Defining Fields in a Separate Data Area
Structuring a DEFINE DATA Statement Using Level Numbers

Use of DEFINE DATA Statement
In the DEFINE DATA statement, you define all the fields - database fields as well as user-defined variables -
that are to be used in the program.

All fields to be used must be defined in the DEFINE DATA statement.

There are two ways to define the fields:

The fields can be defined within the DEFINE DATA statement itself.
The fields can be defined outside the program in a local or global data area, with the DEFINE DATA
statement referencing that data area.

If fields are used by multiple programs/routines, they should be defined in a data area outside the programs.

For a clear application structure, it is usually better to define fields in data areas outside the programs.

Data areas are created and maintained with the data area editor, which is described in your Natural Editor
documentation.

In the first example below, the fields are defined within the DEFINE DATA statement of the program. In the
second example, the same fields are defined in a local data area (LDA), and the DEFINE DATA statement only
contains a reference to that data area.

Defining Fields within a DEFINE DATA Statement
The following example illustrates how fields can be defined within the DEFINE DATA statement itself:

 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 PERSONNEL-ID
 1 #VARI-A (A20)
 1 #VARI-B (N3.2)
 1 #VARI-C (I4)
 END-DEFINE
 ...

9Copyright © Software AG 2003

Use and Structure of DEFINE DATA StatementUse and Structure of DEFINE DATA Statement

Defining Fields in a Separate Data Area
The following example illustrates how fields can be defined in a Local Data Area (LDA):

Program:

 DEFINE DATA LOCAL
 USING LDA39
 END-DEFINE
 ...

Local Data Area "LDA39":

 I T L Name F Leng Index/Init/EM/Name/Comment
 - - - -------------------------------- - ---- ---------------------------------
 V 1 VIEWEMP EMPLOYEES
 2 NAME A 20
 2 FIRST-NAME A 20
 2 PERSONNEL-ID A 8
 1 #VARI-A A 20
 1 #VARI-B N 3.2
 1 #VARI-C I 4

Structuring a DEFINE DATA Statement Using Level
Numbers
The following topics are covered:

Structuring and Grouping Your Definitions
Level Numbers in View Definitions
Level Numbers in Field Groups
Level Numbers in Redefinitions

Structuring and Grouping Your Definitions

Level numbers are used within the DEFINE DATA statement to indicate the structure and grouping of the
definitions. This is relevant with:

view definitions
field groups
redefinitions

Level numbers are 1- or 2-digit numbers in the range from 01 to 99 (the leading "0" is optional).

Generally, variable definitions are on Level 1.

The level numbering in view definitions, redefinitions and groups must be sequential; no level numbers may be
skipped.

Copyright © Software AG 200310

Use and Structure of DEFINE DATA StatementDefining Fields in a Separate Data Area

Level Numbers in View Definitions

If you define a view, the specification of the view name must be on Level 1, and the fields the view is comprised
of must be on Level 2. (For details on view definitions, see Database Access.)

Example of Level Numbers in View Definition

 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 BIRTH
 ...
 END-DEFINE

Level Numbers in Field Groups

The definition of groups provides a convenient way of referencing a series of consecutive fields. If you define
several fields under a common group name, you can reference the fields later in the program by specifying only
the group name instead of the names of the individual fields.

The group name must be specified on Level 1, and the fields contained in the group must be one level lower.

For group names, the same naming conventions apply as for user-defined variables.

Example of Level Numbers in Group

 DEFINE DATA LOCAL
 1 #FIELDA (N2.2)
 1 #FIELDB (I4)
 1 #GROUPA
 2 #FIELDC (A20)
 2 #FIELDD (A10)
 2 #FIELDE (N3.2)
 1 #FIELDF (A2)
 ...
 END-DEFINE

In this example, the fields #FIELDC, #FIELDD and #FIELDE are defined under the common group name
#GROUPA. The other three fields are not part of the group. Note that #GROUPA only serves as a group name
and is not a field in its own right (and therefore does not have a format/length definition).

Level Numbers in Redefinitions

If you redefine a field, the REDEFINE option must be on the same level as the original field, and the fields
resulting from the redefinition must be one level lower. For details on redefinitions, see Redefining Fields.

Example of Level Numbers in Redefinition
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF STAFFDDM
 2 BIRTH
 2 REDEFINE BIRTH
 3 #YEAR-OF-BIRTH (N4)
 3 #MONTH-OF-BIRTH (N2)
 3 #DAY-OF-BIRTH (N2)
 1 #FIELDA (A20)
 1 REDEFINE #FIELDA
 2 #SUBFIELD1 (N5)

11Copyright © Software AG 2003

Level Numbers in View DefinitionsUse and Structure of DEFINE DATA Statement

 2 #SUBFIELD2 (A10)
 2 #SUBFIELD3 (N5)
 ...
 END-DEFINE

In this example, the database field BIRTH is redefined as three user-defined variables, and the user-defined
variable #FIELDA is redefined as three other user-defined variables.

Copyright © Software AG 200312

Use and Structure of DEFINE DATA StatementExample of Level Numbers in Redefinition

User-Defined Variables
User-defined variables are fields which you define yourself in a program. They are used to store values or
intermediate results obtained at some point in program processing for additional processing or display.

The following topics are covered:

Defining User-Defined Variables
Names of User-Defined Variables
Format and Length of User-Defined Variables

Defining User-Defined Variables
You define a user-defined variable by specifying its name and its format/length in the DEFINE DATA
statement.

Example:

In this example, a user-defined variable of alphanumeric format and a length of 10 positions is defined with the
name #FIELD1.

 DEFINE DATA LOCAL
 1 #FIELD1 (A10)
 ...
 END-DEFINE

Names of User-Defined Variables
When working with user-defined variables, the following naming conventions must be met.

Length of Variable Names

The name of a user-defined variable may be 1 to 32 characters long.

You can use variable names of over 32 characters (for example, in complex applications where longer
meaningful variable names enhance the readability of programs); however, only the first 32 characters are
significant and must therefore be unique, the remaining characters will be ignored by Natural.

Limitations of Variable Names

The name of a user-defined variable must not be a Natural reserved word.

Within one Natural program, you must not use the same name for a user-defined variable and a database field,
because this might lead to referencing errors (see Qualifying Data Structures).

Characters Allowed in Variable Names

The name of a user-defined variable can consist of the following characters:

13Copyright © Software AG 2003

User-Defined VariablesUser-Defined Variables

Character Explanation

A - Z alphabetical characters (upper and lower case)

0 - 9 numeric characters

- hyphen

@ at sign

_ underline

/ slash

$ dollar sign

§ paragraph sign

& ampersand

hash/number sign

+ plus sign (only allowed as first character)

First Character of Variable Names

The first character of the name must be one of the following:

an upper-case alphabetical character

+
&

If the first character is a "#", "+" or "&", the name must consist of at least one additional character.

Variables in a GDA with a "+" as first character must be defined on Level 01. Other levels are only used in a
redefinition.

"+" as the first character of a name is only allowed for application-independent variables (AIVs) and variables in
a global data area. Names of AIVs must begin with a "+".

"&" as the first character of a name is used in conjunction with dynamic source program modification (see the
RUN statement in the Natural Statements documentation), and as a dynamically replaceable character when
defining processing rules (see the map editor description in your Natural Editors documentation).

Special Considerations Regarding the Case of Characters in Variable
Names

On Windows and UNIX, lower-case characters entered as part of a variable name are internally converted to
upper case. The same happens on mainframe computers if the LOWSRCE option of the COMPOPT system
command is set to ON.

Lower-case characters can only be entered as the second and subsequent characters of a variable name.

On mainframe computers, lower-case characters are not translated to upper case and are therefore interpreted as
being different from the respective upper-case characters, if

the LOWSRCE option of the COMPOPT system command is set to OFF (the default value) and
input in the editor is not translated to upper case (translation to upper case in the editor is controlled by
editor profile options and by options depending on the operating system).

Copyright © Software AG 200314

User-Defined VariablesFirst Character of Variable Names

For example, this will cause the names #FIELD and #field to be interpreted as two different field names.

Note:
For compatibility reasons, you should not use this feature if you plan to port applications developed on
mainframe computers to Windows or UNIX.
If you use lower-case characters as part of the variable name, it is highly recommended that variable names are
unique regardless of their case.

Format and Length of User-Defined Variables
Format and length of a user-defined variable are specified in parentheses after the variable name.

A user-defined variable can have one of the following formats and corresponding lengths:

Format Definable Length Internal Length
(in Bytes)

A Alphanumeric 1 - 1073741824 (1GB)1 - 1073741824

B Binary 1 - 1073741824 (1GB)1 - 1073741824

C Attribute Control - 2

D Date - 4

F Floating Point 4 or 8 4 or 8

I Integer 1, 2 or 4 1, 2 or 4

L Logical - 1

N Numeric (unpacked) 1 - 29 1 - 29

P Packed numeric 1 - 29 1 - 15

T Time - 7

Further information is provided in User-defined Variables in the Natural Statements documentation.

Examples of User-Defined Variables
 DEFINE DATA LOCAL
 /* 7 positions before and 2 after decimal point.
 /* and 1 sign position.
 ...
 END-DEFINE

Note:
When a user-defined variable of format P is output with a DISPLAY, WRITE, or INPUT statement, Natural
internally converts the format to N for the output.

15Copyright © Software AG 2003

Format and Length of User-Defined VariablesUser-Defined Variables

User-Defined Constants
Constants can be used throughout Natural programs. This document discusses the types of constants that are
supported and how they are used.

The following topics are covered:

Numeric Constants
Alphanumeric Constants
Date and Time Constants
Hexadecimal Constants
Logical Constants
Floating Point Constants
Attribute Constants
Defining Named Constants

Numeric Constants
A numeric constant may contain 1 to 29 numeric digits.

A numeric constant used with a COMPUTE, MOVE, or arithmetic statement may contain a decimal point and
sign notation.

Examples:

MOVE 3 TO #XYZ
COMPUTE #PRICE = 23.34
COMPUTE #XYZ = -103
COMPUTE #A = #B * 6074

Alphanumeric Constants
An alphanumeric constant may contain 1 to 253 alphanumeric characters.

An alphanumeric constant must be enclosed in either apostrophes (’) or quotation marks (").

Examples:

MOVE ’ABC’ TO #XYZ
MOVE ’% INCREASE’ TO #TITLE
DISPLAY "LAST-NAME" NAME

If you want an apostrophe to be part of an alphanumeric constant that is enclosed in apostrophes, you must write
this as two apostrophes or as a single quotation mark.

If you want an apostrophe to be part of an alphanumeric constant that is enclosed in quotation marks, you write
this as a single apostrophe.

Example:

If you want the following to be output:

Copyright © Software AG 200316

User-Defined ConstantsUser-Defined Constants

HE SAID, ’HELLO’

you can use any of the following notations:

WRITE ’HE SAID, ’’HELLO’’’
WRITE ’HE SAID, "HELLO"’
WRITE "HE SAID, ""HELLO"""
WRITE "HE SAID, ’HELLO’"

An alphanumeric constant that is used to assign a value to a user-defined variable must not be split between
statement lines.

Alphanumeric constants may be concatenated to form a single value by use of a hyphen.

Examples:

MOVE ’XXXXXX’ -
 ’YYYYYY’ TO #FIELD

MOVE "ABC" - ’DEF’ TO #FIELD

In this way, alphanumeric constants can also be concatenated with hexadecimal constants.

Date and Time Constants
A date constant may be used in conjunction with a format D variable. Date constants may have the following
formats:

D’yyyy-mm-dd’ International date format

D’dd.mm.yyyy’ German date format

D’dd/mm/yyyy’ European date format

D’mm/dd/yyyy’ USA date format

where dd represent the number of the day, mm the number of the month and yyyy the year.

Example:

DEFINE DATA LOCAL
1 #DATE (D)
END-DEFINE
...
MOVE D’1997-08-11’ TO #DATE
...

The default date format is controlled by the profile parameter DTFORM as set by the Natural administrator.

A time constant may be used in conjunction with a format T variable. A time constant has the following format:

T’ hh:ii:ss’

where hh represents hours,ii minutes and ss seconds.

Example:

17Copyright © Software AG 2003

Date and Time ConstantsUser-Defined Constants

DEFINE DATA LOCAL
1 #TIME (T)
END-DEFINE
...
MOVE T’11:33:00’ TO #TIME

Hexadecimal Constants
A hexadecimal constant may be used to enter a value which cannot be entered as a standard keyboard character.

A hexadecimal constant is prefixed with an "H". The constant itself must be enclosed in apostrophes and may
consist of the hexadecimal characters 0 - 9, A - F. Two hexadecimal characters are required to represent one byte
of data.

The hexadecimal representation of a character varies, depending on whether your computer uses an ASCII or
EBCDIC character set. Wenn you transfer hexadecimal constants to another computer, you may therefore have
to convert the characters.

ASCII Examples:

H’313233’ (equivalent to the alphanumeric constant ’123’)
H’414243’ (equivalent to the alphanumeric constant ’ABC’)

EBCDIC Examples:

H’F1F2F3’ (equivalent to the alphanumeric constant ’123’)
H’C1C2C3’ (equivalent to the alphanumeric constant ’ABC’)

Hexadecimal constants may be concatenated by using a hyphen between the constants.

ASCII Example:

H’414243’ - H’444546’ (equivalent to ’ABCDEF’)

EBCDIC Example:

H’C1C2C3’ - H’C4C5C6’ (equivalent to ’ABCDEF’)

Logical Constants
The logical constants "TRUE" and "FALSE" may be used to assign a logical value to a field defined with format
L.

Example:

DEFINE DATA LOCAL
1 #FLAG (L)
END-DEFINE
...
MOVE TRUE TO #FLAG
...
IF #FLAG ...
 statement ...
 MOVE FALSE TO #FLAG
END-IF
...

Copyright © Software AG 200318

User-Defined ConstantsHexadecimal Constants

Floating Point Constants
Floating point constants can be used with variables defined with format F.

Example:

DEFINE DATA LOCAL
1 #FLT1 (F4)
END-DEFINE
...
COMPUTE #FLT1 = -5.34E+2
...

Attribute Constants
Attribute constants can be used with variables defined with format C (control variables). This type of constant
must be enclosed within parentheses.

The following attributes may be used:

AD=D default CD=BL blue

AD=B blinking CD=GR green

AD=I intensified CD=NE neutral

AD=N non-display CD=PI pink

AD=V reverse video CD=RE red

AD=U underlined CD=TU turquoise

AD=C cursive/italic CD=YE yellow

AD=Y dynamic attribute

AD=P protected

See also session parameters AD and CD.

Example:

DEFINE DATA LOCAL
1 #ATTR (C)
1 #FIELD (A10)
END-DEFINE
...
MOVE (AD=I CD=BL) TO #ATTR
...
INPUT #FIELD (CV=#ATTR)
...

Defining Named Constants
If you need to use the same constant value several times in a program, you can reduce the maintenance effort by
defining a named constant: you define a field in the DEFINE DATA statement, assign a constant value to it, and
use the field name in the program instead of the constant value. Thus, when the value has to be changed, you
only have to change it once in the DEFINE DATA statement and not everywhere in the program where it occurs.

19Copyright © Software AG 2003

Floating Point ConstantsUser-Defined Constants

You specify the constant value in angle brackets with the keyword "CONSTANT" after the field definition in the
DEFINE DATA statement. If the value is alphanumeric, it must be enclosed in apostrophes.

Example:

DEFINE DATA LOCAL
1 #FIELDA (N3) CONSTANT <100>
1 #FIELDB (A5) CONSTANT <’ABCDE’>
END-DEFINE
...

During the execution of the program, the value of such a named constant cannot be modified.

Copyright © Software AG 200320

User-Defined ConstantsDefining Named Constants

Initial Values (and the RESET Statement)
The following topics are covered:

Assigning Initial Values to a User-Defined Variable
Default Initial Values
RESET Statement

Assigning Initial Values to a User-Defined Variable
You can assign an initial value to a user-defined variable. You specify the initial value in angle brackets with the
keyword "INIT" after the variable definition in the DEFINE DATA statement.

If the initial value is alphanumeric, it must be enclosed in apostrophes.

Example:

 DEFINE DATA LOCAL
 1 #FIELDA (N3) INIT <100>
 1 #FIELDB (A20) INIT <’ABC’>
 END-DEFINE
 ...

The initial value for a field may also be the value of a Natural system variable.

Example of system variable *DATX as initial value:

 DEFINE DATA LOCAL
 1 #MYDATE (D) INIT <*DATX>
 END-DEFINE
 ...

As initial value, a variable can also be filled, entirely or partially, with a specific single character or string of
characters (only possible for alphanumeric variables).

With the option FULL LENGTH<character(s)> the entire field is filled with the specified character(s).

With the option LENGTHn <character(s)> the first n positions of the field are filled with the specified
character(s).

Example of FULL LENGTH:

In this example, the entire field will be filled with asterisks.

 DEFINE DATA LOCAL
 1 #FIELD (A25) INIT FULL LENGTH <’*’>
 END-DEFINE
 ...

Example of LENGTH n:

In this example, the first 4 positions of the field will be filled with exclamation marks.

 DEFINE DATA LOCAL
 1 #FIELD (A25) INIT LENGTH 4 <’!’>
 END-DEFINE
 ...

21Copyright © Software AG 2003

Initial Values (and the RESET Statement)Initial Values (and the RESET Statement)

Default Initial Values
If you specify no initial value for a field, the field will be initialized with a default initial value (null value)
depending on its format:

Format Default Initial Value

B, F, I, N, P 0

A blank

L F(ALSE)

D D’ ’

T T’00:00:00’

C (AD=D)

RESET Statement
The RESET statement is used to set the value of a field to a null value, or to a specific initial value.

RESET (without INITIAL) sets the value of each specified field to a null value.
RESET INITIAL sets each specified field to the initial value as defined for the field in the DEFINE DATA
statement.

Example:

 DEFINE DATA LOCAL
 1 #FIELDA (N3) INIT <100>
 1 #FIELDB (A20) INIT <’ABC’>
 1 #FIELDC (I4) INIT <5>
 END-DEFINE
 ...
 ...
 RESET #FIELDA /* resets field value to null
 ...
 RESET INITIAL #FIELDA #FIELDB #FIELDC /* resets field values to initial values
 ...

Copyright © Software AG 200322

Initial Values (and the RESET Statement)Default Initial Values

Redefining Fields
Redefinition is used to change the format of a field, or to divide a single field into segments.

The following topics are covered:

Using the REDEFINE Option of DEFINE DATA
Example Program Illustrating the Use of a Redefinition

Using the REDEFINE Option of DEFINE DATA
The REDEFINE option of the DEFINE DATA statement can be used to redefine a single field - either a
user-defined variable or a database field - as one or more new fields. A group can also be redefined.

Important: Dynamic variables are not allowed.

The REDEFINE option redefines byte positions of a field from left to right, regardless of the format. Byte
positions must match between original field and redefined field(s).

The redefinition must be specified immediately after the definition of the original field.

Example 1:

In the following example, the database field BIRTH is redefined as three new user-defined variables:

 DEFINE DATA LOCAL
 01 EMPLOY-VIEW VIEW OF STAFFDDM
 02 NAME
 02 BIRTH
 02 REDEFINE BIRTH
 03 #BIRTH-YEAR (N4)
 03 #BIRTH-MONTH (N2)
 03 #BIRTH-DAY (N2)
 END-DEFINE
 ...

Example 2:

In the following example, the group #VAR2, which consists of two user-defined variables of format N and P
respectively, is redefined as a variable of format A:

 DEFINE DATA LOCAL
 01 #VAR1 (A15)
 01 #VAR2
 02 #VAR2A (N4.1)
 02 #VAR2B (P6.2)
 01 REDEFINE #VAR2
 02 #VAR2RD (A10)
 END-DEFINE
 ...

With the notation FILLER nX you can define n filler bytes - that is, segments which are not to be used - in the
field that is being redefined. (The definition of trailing filler bytes is optional.)

Example 3:

23Copyright © Software AG 2003

Redefining FieldsRedefining Fields

In the following example, the user-defined variable #FIELD is redefined as three new user-defined variables,
each of format/length A2. The FILLER notations indicate that the 3rd and 4th and 7th to 10th bytes of the
original field are not be used.

 DEFINE DATA LOCAL
 1 #FIELD (A12)
 1 REDEFINE #FIELD
 2 #RFIELD1 (A2)
 2 FILLER 2X
 2 #RFIELD2 (A2)
 2 FILLER 4X
 2 #RFIELD3 (A2)
 END-DEFINE
 ...

Example Program Illustrating the Use of a Redefinition
The following program illustrates the use of a redefinition:

 ** Example Program ’DDATAX01’
 DEFINE DATA LOCAL
 01 VIEWEMP VIEW OF EMPLOYEES
 02 NAME
 02 FIRST-NAME
 02 SALARY (1:1)
 01 #PAY (N9)
 01 REDEFINE #PAY
 02 FILLER 3X
 02 #USD (N3)
 02 #000 (N3)
 END-DEFINE
 *
 READ (3) VIEWEMP BY NAME STARTING FROM ’JONES’
 MOVE SALARY (1) TO #PAY
 DISPLAY NAME FIRST-NAME #PAY #USD #000
 END-READ
 END

Note how #PAY and the fields resulting from its definition are displayed:

 Page 1 99-08-08 17:48:59

 NAME FIRST-NAME #PAY #USD #000
 -------------------- -------------------- ---------- ---- ----

 JONES VIRGINIA 46000 46 0
 JONES MARSHA 50000 50 0
 JONES ROBERT 31000 31 0

Copyright © Software AG 200324

Redefining FieldsExample Program Illustrating the Use of a Redefinition

Arrays
Natural supports the processing of arrays.

The following topics are covered:

Defining Arrays
Initial Values for Arrays
Assigning Initial Values to One-Dimensional Arrays
Assigning Initial Values to Two-Dimensional Arrays
A Three-Dimensional Array
Arrays as Part of a Larger Data Structure
Database Arrays
Using Arithmetic Expressions in Index Notation
Arithmetic Support for Arrays

Defining Arrays
Arrays are multi-dimensional tables, that is, two or more logically related elements identified under a single
name. Arrays can consist of single data elements of multiple dimensions or hierarchical data structures which
contain repetitive structures or individual elements. In Natural, an array can be one-, two- or three-dimensional.
It can be an independent variable, part of a larger data structure or part of a database view.

To define an array variable, after the format and length you specify a slash followed by a so-called index
notation, that is, the number of occurrences of the array.

Important:
Dynamic variables are not allowed.

For example, the following array has three occurrences, each occurrence being of format/length A10:

 DEFINE DATA LOCAL
 1 #ARRAY (A10/1:3)
 END-DEFINE
 ...

To define a two-dimensional array, you specify an index notation for both dimensions:

 DEFINE DATA LOCAL
 1 #ARRAY (A10/1:3,1:4)
 END-DEFINE
 ...

A two-dimensional array can be visualized as a table. The array defined in the example above would be a table
that consists of 3 "rows" and 4 "columns":

25Copyright © Software AG 2003

ArraysArrays

Initial Values for Arrays
To assign initial values to one or more occurrences of an array, you use an INIT specification, similar to that for
"ordinary" variables.

Assigning Initial Values to One-Dimensional Arrays
The following examples illustrate how initial values are assigned to a one-dimensional array.

To assign an initial value to one occurrence, you specify:

1 #ARRAY (A1/1:3) INIT (2) <’A’>

"A" is assigned to the second occurrence.

To assign the same initial value to all occurrences, you specify:

1 #ARRAY (A1/1:3) INIT ALL <’A’>

"A" is assigned to every occurrence. Alternatively, you could specify:

1 #ARRAY (A1/1:3) INIT (*) <’A’>

To assign the same initial value to a range of several occurrences, you specify:

1 #ARRAY (A1/1:3) INIT (2:3) <’A’>

"A" is assigned to the second to third occurrence.

To assign a different initial value to every occurrence, you specify:

1 #ARRAY (A1/1:3) INIT <’A’,’B’,’C’>

"A" is assigned to the first occurrence, "B" to the second, and "C" to the third.

To assign different initial values to some (but not all) occurrences, you specify:

1 #ARRAY (A1/1:3) INIT (1) <’A’> (3) <’C’>

"A" is assigned to the first occurrence, and "C" to the third; no value is assigned to the second occurrence.

Alternatively, you could specify:

1 #ARRAY (A1/1:3) INIT <’A’,,’C’>

If fewer initial values are specified than there are occurrences, the last occurrences remain empty:

1 #ARRAY (A1/1:3) INIT <’A’,’B’>

"A" is assigned to the first occurrence, and "B" to the second; no value is assigned to the third occurrence.

Assigning Initial Values to Two-Dimensional Arrays
The following examples illustrate how initial values are assigned to a two-dimensional array.

For the examples, let us assume a two-dimensional array with three occurrences in the first dimension ("rows")
and four occurrences in the second dimension ("columns"):

Copyright © Software AG 200326

ArraysInitial Values for Arrays

1 #ARRAY (A1/1:3,1:4)

Vertical: First Dimension (1:3), Horizontal: Second Dimension (1:4):

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

The first set of examples illustrates how the same initial value is assigned to occurrences of a two-dimensional
array; the second set of examples illustrates how different initial values are assigned.

In the examples, please note in particular the usage of the notations "*" and "V". Both notations refer to all
occurrences of the dimension concerned: "*" indicates that all occurrences in that dimension are initialized with
the same value, while "V" indicates that all occurrences in that dimension are initialized with different values.

Assigning the Same Value
Assigning Different Values

Assigning the Same Value

To assign an initial value to one occurrence, you specify:

 A

To assign the same initial value to one occurrence in the second dimension - in all occurrences of the first
dimension - you specify:

 1 #ARRAY (A1/1:3,1:4) INIT (*,3) <’A’>

 A

 A

 A

To assign the same initial value to a range of occurrences in the first dimension - in all occurrences of the
second dimension - you specify:

 1 #ARRAY (A1/1:3,1:4) INIT (2:3,*) <’A’>

A A A A

A A A A

To assign the same initial value to a range of occurrences in each dimension, you specify:

 1 #ARRAY (A1/1:3,1:4) INIT (2:3,1:2) <’A’>

27Copyright © Software AG 2003

Assigning the Same ValueArrays

A A

A A

To assign the same initial value to all occurrences (in both dimensions), you specify:

 1 #ARRAY (A1/1:3,1:4) INIT ALL <’A’>

A A A A

A A A A

A A A A

Alternatively, you could specify:

 1 #ARRAY (A1/1:3,1:4) INIT (*,*) <’A’>

Assigning Different Values
 1 #ARRAY (A1/1:3,1:4) INIT (V,2) <’A’,’B’,’C’>

 A

 B

 C

 1 #ARRAY (A1/1:3,1:4) INIT (V,2:3) <’A’,’B’,’C’>

 A A

 B B

 C C

 1 #ARRAY (A1/1:3,1:4) INIT (V,*) <’A’,’B’,’C’>

A A A A

B B B B

C C C C

 1 #ARRAY (A1/1:3,1:4) INIT (V,*) <’A’,,’C’>

A A A A

C C C C

 1 #ARRAY (A1/1:3,1:4) INIT (V,*) <’A’,’B’>

Copyright © Software AG 200328

ArraysAssigning Different Values

A A A A

B B B B

 1 #ARRAY (A1/1:3,1:4) INIT (V,1) <’A’,’B’,’C’>
 (V,3) <’D’,’E’,’F’>

A D

B E

C F

 1 #ARRAY (A1/1:3,1:4) INIT (3,V) <’A’,’B’,’C’,’D’>

A B C D

 1 #ARRAY (A1/1:3,1:4) INIT (*,V) <’A’,’B’,’C’,’D’>

A B C D

A B C D

A B C D

 1 #ARRAY (A1/1:3,1:4) INIT (2,1) <’A’> (*,2) <’B’>
 (3,3) <’C’> (3,4) <’D’>

 B

A B

 B C D

 1 #ARRAY (A1/1:3,1:4) INIT (2,1) <’A’> (V,2) <’B’,C’,D’>
 (3,3) <’E’> (3,4) <’F’>

 B

A C

 D E F

A Three-Dimensional Array
A three-dimensional array could be visualized as follows:

29Copyright © Software AG 2003

A Three-Dimensional ArrayArrays

The array illustrated here would be defined as follows (at the same time assigning an initial value to the
highlighted field in row 1, column 2, plane 2):

 DEFINE DATA LOCAL
 1 #ARRAY2
 2 #ROW (1:4)
 3 #COLUMN (1:3)
 4 #PLANE (1:3)
 5 #FIELD2 (P3) INIT (1,2,2) <100>
 END-DEFINE
 ...

If defined as a local data area in the data area editor, the same array would look as follows:

 I T L Name F Leng Index/Init/EM/Name/Comment
 - - - -------------------------------- - ---- ---------------------------------
 1 #ARRAY2
 2 #ROW (1:4)
 3 #COLUMN (1:3)
 4 #PLANE (1:3)
 I 5 #FIELD2 P 3

Arrays as Part of a Larger Data Structure
The multiple dimensions of an array make it possible to define data structures analogous to COBOL or PL1
structures.

Example:

Copyright © Software AG 200330

ArraysArrays as Part of a Larger Data Structure

 DEFINE DATA LOCAL
 1 #AREA
 2 #FIELD1 (A10)
 2 #GROUP1 (1:10)
 3 #FIELD2 (P2)
 3 #FIELD3 (N1/1:4)
 END-DEFINE
 ...

In this example, the data area #AREA has a total size of:

10 + (10 * (2 + (1 * 4))) bytes = 70 bytes.

#FIELD1 is alphanumeric and 10 bytes long. #GROUP1 is the name of a sub-area within #AREA which consists
of 2 fields and has 10 occurrences. #FIELD2 is packed numeric, length 2. #FIELD3 is the second field of
#GROUP1 with four occurrences, and is numeric, length 1.

To reference a particular occurrence of #FIELD3, two indices are required: first, the occurrence of #GROUP1
must be specified, and second, the particular occurrence of #FIELD3 must also be specified. For example, in an
ADD statement later in the same program, #FIELD3 would be referenced as follows:

 ADD 2 TO #FIELD3 (3,2)

Database Arrays
Adabas supports array structures within the database in the form of multiple-value fields and periodic groups.
These are described under Database Arrays.

The following example shows a DEFINE DATA view containing a multiple-value field:

 DEFINE DATA LOCAL
 1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 ADDRESS-LINE (1:10) /* <--- MULTIPLE-VALUE FIELD
 END-DEFINE
 ...

The same view in a local data area would look as follows:

 I T L Name F Leng Index/Init/EM/Name/Comment
 - - - -------------------------------- - ---- ---------------------------------
 V 1 EMPLOYEES-VIEW EMPLOYEES
 2 NAME A 20
 M 2 ADDRESS-LINE A 20 (1:10) /* MU-FIELD

Using Arithmetic Expressions in Index Notation
A simple arithmetic expression may also be used to express a range of occurrences in an array.

Examples:

MA (I:I+5) Values of the field MA are referenced, beginning with value I and ending with value I+5.

MA (I+2:J-3) Values of the field MA are referenced, beginning with value I+2 and ending with value J-3.

31Copyright © Software AG 2003

Database ArraysArrays

Only the arithmetic operators "+" and "-" may be used in index expressions.

Arithmetic Support for Arrays
Arithmetic support for arrays include operations at array level, at row/column level, and at individual element
level. Only simple arithmetic expressions are permitted with array variables, with only one or two operands and
an optional third variable as the receiving field. Only the arithmetic operators "+" and "-" are allowed for
expressions defining index ranges.

Examples of Array Arithmetics

The following examples assume the following field definitions:

 DEFINE DATA LOCAL
 01 #A (N5/1:10,1:10)
 01 #B (N5/1:10,1:10)
 01 #C (N5)
 END-DEFINE
 ...

1. ADD #A(*,*) TO #B(*,*)
The result operand, array #B, contains the addition, element by element, of the array #A and the original
value of array #B.

2. ADD 4 TO #A(*,2)
The second column of the array #A is replaced by its original value plus 4.

3. ADD 2 TO #A(2,*)
The second row of the array #A is replaced by its original value plus 2.

4. ADD #A(2,*) TO #B(4,*)
The value of the second row of array #A is added to the fourth row of array #B.

5. ADD #A(2,*) TO #B(*,2)
This is an illegal operation and will result in a syntax error. Rows may only be added to rows and columns
to columns.

6. ADD #A(2,*) TO #C
All values in the second row of the array #A are added to the scalar value #C.

7. ADD #A(2,5:7) TO #C
The fifth, sixth, and seventh column values of the second row of array #A are added to the scalar value #C.

Copyright © Software AG 200332

ArraysArithmetic Support for Arrays

Data Blocks
To save data storage space, you can create a global data area with data blocks.

The following topics are covered:

Example of Data Block Usage
Defining Data Blocks
Block Hierarchies

Example of Data Block Usage
Data blocks can overlay each other during program execution, thereby saving storage space.

For example, given the following hierarchy, Blocks B and C would be assigned the same storage area. Thus it
would not be possible for Blocks B and C to be in use at the same time. Modifying Block B would result in
destroying the contents of Block C.

Defining Data Blocks
You define data blocks in the data area editor. You establish the block hierarchy by specifying which block is
subordinate to which: you do this by entering the name of the "parent" block in the comment field of the block
definition.

In the following example, SUB-BLOCKB and SUB-BLOCKC are subordinate to MASTER-BLOCKA;
SUB-BLOCKD is subordinate to SUB-BLOCKB.

33Copyright © Software AG 2003

Data BlocksData Blocks

The maximum number of block levels is 8 (including the master block).

Example:

Global Data Area G-BLOCK:

 I T L Name F Leng Index/Init/EM/Name/Comment
 - - - -------------------------------- - ---- ---------------------------------
 B MASTER-BLOCKA
 1 MB-DATA01 A 10
 B SUB-BLOCKB MASTER-BLOCKA
 1 SBB-DATA01 A 20
 B SUB-BLOCKC MASTER-BLOCKA
 1 SBC-DATA01 A 40
 B SUB-BLOCKD SUB-BLOCKB
 1 SBD-DATA01 A 40

To make the specific blocks available to a program, you use the following syntax in the DEFINE DATA
statement:

Program 1:

 DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA
 END-DEFINE

Program 2:

 DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA.SUB-BLOCKB
 END-DEFINE

Program 3:

 DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA.SUB-BLOCKC
 END-DEFINE

Program 4:

 DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA.SUB-BLOCKB.SUB-BLOCKD
 END-DEFINE

With this structure, Program 1 can share the data in MASTER-BLOCKA with Program 2, Program 3 or Program
4. However, Programs 2 and 3 cannot share the data areas of SUB-BLOCKB and SUB-BLOCKC because these
data blocks are defined at the same level of the structure and thus occupy the same storage area.

Block Hierarchies
Care needs to be taken when using data block hierarchies. Let us assume the following scenario with three
programs using a data block hierarchy:

Copyright © Software AG 200334

Data BlocksBlock Hierarchies

Program 1:

 DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA.SUB-BLOCKB
 END-DEFINE
 *
 MOVE 1234 TO SBB-DATA01
 FETCH ’PROGRAM2’
 END

Program 2:

 DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA
 END-DEFINE
 *
 FETCH ’PROGRAM3’
 END

Program 3:

 DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA.SUB-BLOCKB
 END-DEFINE
 *
 WRITE SBB-DATA01
 END

Explanation

Program 1 uses the global data area G-BLOCK with MASTER-BLOCKA and SUB-BLOCKB. The
program modifies a field in SUB-BLOCKB and FETCHes Program 2 which specifies only
MASTER-BLOCKA in its data definition.
Program 2 resets (deletes the contents of) SUB-BLOCKB. The reason is that a program on Level 1 (for
example, a program called with a FETCH statement) resets any data blocks that are subordinate to the
blocks it defines in its own data definition.
Program 2 now FETCHes program 3 which is to display the field modified in Program 1, but it returns an
empty screen.

For details on program levels, see Multiple Levels of Invoked Objects.

35Copyright © Software AG 2003

Block HierarchiesData Blocks

Accessing Data in an Adabas Database
This document describes various aspects of accessing data in a database with Natural.

The following topics are covered:

Data Definition Modules (DDMs)
Database Arrays
DEFINE DATA Views
Statements for Database Access

READ Statement
FIND Statement
HISTOGRAM Statement

Multi-Fetch Clause
Database Processing Loops
Database Update - Transaction Processing
Statements ACCEPT and REJECT
AT START/END OF DATA Statements

Copyright © Software AG 200336

Accessing Data in an Adabas DatabaseAccessing Data in an Adabas Database

Data Definition Modules - DDMs
The following topics are covered:

Use of Data Definition Modules
Listing/Displaying DDMs
Components of a DDM

Use of Data Definition Modules
For Natural to be able to access a database file, a logical definition of the physical database file is required. Such
a logical file definition is called a data definition module (DDM).

The DDM contains information about the individual fields of the file - information which is relevant for the use
of these fields in a Natural program. A DDM constitutes a logical view of a physical database file.

For each physical file of a database, one or more DDMs can be defined.

DDMs are defined by the Natural administrator with Predict (or, if Predict is not available, with the
corresponding Natural function).

Use the system command SYSDDM to invoke the SYSDDM utility. The SYSDDM utility is used to perform all
functions needed for the creation and maintenance of Natural data definition modules.

For further information on the SYSDDM utility, see the section SYSDDM Utility in the Natural Utilities
documentation and the section DDM Services in the Natural Editors documentation.

The length of a DDM name is restricted to 32 characters.

For each database field, a DDM contains the database-internal field name as well as the "external" field name,
that is, the name of the field as used in a Natural program. Moreover, the formats and lengths of the fields are
defined in the DDM, as well as various specifications that are used when the fields are output with a DISPLAY
or WRITE statement (column headings, edit masks, etc.).

37Copyright © Software AG 2003

Data Definition Modules - DDMsData Definition Modules - DDMs

Listing/Displaying DDMs
If you do not know the name of the DDM you want, you can use the system command LIST DDM to get a list of
all existing DDMs that are available. From the list, you can then select a DDM for display.

To display a DDM whose name you know, you use the system command LIST DDM ddm-name.

For example:

LIST DDM EMPLOYEES

A list of all fields defined in the DDM will then be displayed, along with information about each field, see the
following section Components of a DDM.

Components of a DDM
For each field, a DDM contains the following information:

Column Explanation

T The type of the field:

blank Elementary field. This type of field can have only one value within a record.

M Multiple-value field. This type of field can have more than one value within a record.

P Periodic group. A periodic group is a group of fields that can have more than one
occurrence within a record.

G Group. A group is a number of fields defined under one common group name. This makes
it possible to reference several fields collectively by using the group name instead of the
names of all the individual fields.

* Comment line.

L The level number assigned to the field.
Levels are used to indicate the structure and grouping of the field definitions. This is relevant with
view definitions, redefinitions and field groups.

DB The two-character database-internal field name.

Name The 3- to 32-character external field name. This is the field name used in a Natural program to
reference the field.

HD= indicates a default column header to appear above the field when the field is output via a
DISPLAY statement. If no header is specified, the field name is used as column header.

EM= indicates a default edit mask to be used when the field is output via a DISPLAY statement.

F The format of the field (A=alphanumeric, N=numeric unpacked, P=packed numeric, etc.).

Len The length of the field.
For numeric fields, length is specified as "nn.m", where "nn" is the number of digits before the
decimal point and "m" is the number of digits after the decimal point.

Copyright © Software AG 200338

Data Definition Modules - DDMsListing/Displaying DDMs

Column Explanation

S The type of suppression assigned to the field:

N indicates null-value suppression, which means that null values for the field will not be returned
when the field is used to construct a basic search criterion (WITH clause of a FIND statement),
in a HISTOGRAM statement, or in a READ LOGICAL statement.

F indicates that the field is defined with the fixed storage option (that is, the field is not
compressed).

A blank indicates normal compression, which means that trailing blanks in alphanumeric fields and
leading zeros in numeric fields are suppressed.

D The descriptor type of the field; for example:

D elementary descriptor,

N non-descriptor,

P phonetic descriptor.

U subdescriptor,

S superdescriptor,

A blank in this column indicates that the field is not a descriptor.

A descriptor can be used as the basis of a database search. A field which has a "D" or "S" in this
column can be used in the BY clause of the READ statement. Once a record has been read from the
database using the READ statement, a DISPLAY statement can reference any field which has either
a "D" or a blank in the "D" column.

Remarks This column can contain comments about the field.

Above the list of fields, the following is displayed: the number of the file from which the DDM is derived (DDM
FNR), the number of the database where that file is stored (DDM DBID), and the "Default Sequence" field, that
is, the name of the field used to control logical sequential reading of the file if no such field is specified in the
READ LOGICAL statement of a program.

39Copyright © Software AG 2003

Components of a DDMData Definition Modules - DDMs

Database Arrays
Adabas supports array structures within the database in the form of multiple-value fields and periodic groups.

The following topics are covered:

Multiple-Value Fields
Periodic Groups
Referencing Multiple-Value Fields and Periodic Groups
Multiple-Value Fields Within Periodic Groups
Referencing Multiple-Value Fields Within Periodic Groups
Referencing the Internal Count of a Database Array

Multiple-Value Fields
A multiple-value field is a field which can have more than one value (up to 191) within a given record.

Example:

Assuming that the above is a record in an employees file, the first field (Name) is an elementary field, which can
contain only one value, namely the name of the person; whereas the second field (Languages), which contains
the languages spoken by the person, is a multiple-value field, as a person can speak more than one language.

Periodic Groups
A periodic group is a group of fields (which may be elementary fields and/or multiple-value fields) that may
have more than one occurrence (up to 191) within a given record.

Copyright © Software AG 200340

Database ArraysDatabase Arrays

The different values of an multiple-value field are usually called occurrences; that is, the number of occurrences
is the number of values which the field contains, and a specific occurrence means a specific value. Similarly, in
the case of periodic groups, occurrences refer to a group of values.

Example:

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field which contains
the name of a person; Cars is a periodic group which contains the automobiles owned by that person. The
periodic group consists of three fields which contain the registration number, make and model of each
automobile. Each occurrence of Cars contains the values for one automobile.

Referencing Multiple-Value Fields and Periodic Groups
To reference one or more occurrences of a multiple-value field or a periodic group, you specify an index notation
after the field name.

Examples:

The following examples use the multiple-value field LANGUAGES and the periodic group CARS from the
previous examples.

The various values of the multiple-value field LANGUAGES can be referenced as follows.

41Copyright © Software AG 2003

Referencing Multiple-Value Fields and Periodic GroupsDatabase Arrays

LANGUAGES (1) References the first value ("SPANISH").

LANGUAGES (X) The value of the variable X determines the value to be referenced.

LANGUAGES (1:3) References the first three values ("SPANISH", "CATALAN" and "FRENCH").

LANGUAGES (6:10) References the sixth to tenth values.

LANGUAGES (X:Y) The values of the variables X and Y determine the values to be referenced.

The various occurrences of the periodic group CARS can be referenced in the same manner:

CARS (1) References the first occurrence ("B-123ABC/SEAT/IBIZA").

CARS (X) The value of the variable X determines the occurrence to be referenced.

CARS (1:2) References the first two occurrences ("B-123ABC/ SEAT/IBIZA" and
"B-999XYZ/VW/GOLF").

CARS (4:7) References the fourth to seventh occurrences.

CARS
(X:Y)

The values of the variables X and Y determine the occurrences to be referenced.

Multiple-Value Fields Within Periodic Groups
An Adabas array can have up to two dimensions: a multiple-value field within a periodic group.

Example:

Copyright © Software AG 200342

Database ArraysMultiple-Value Fields Within Periodic Groups

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field which contains
the name of a person; Cars is a periodic group which contains the automobiles owned by that person. The
periodic group consists of three fields which contain the registration number, servicing dates and make of each
automobile. Within the periodic group Cars, the field Servicing is a multiple-value field, containing the different
servicing dates for each automobile.

Referencing Multiple-Value Fields Within Periodic
Groups
To reference one or more occurrences of a multiple-value field within a periodic group, you specify a
"two-dimensional"index notation after the field name.

Examples:

The following examples use the multiple-value field SERVICING within the periodic group CARS from the
example above. The various values of the multiple-value field can be referenced as follows:

SERVICING (1,1) References the first value of SERVICING in the first occurrence of CARS
("31-05-97")

SERVICING (1:5,1) References the first value of SERVICING in the first five occurrences of CARS.

SERVICING
(1:5,1:10)

References the first ten values of SERVICING in the first five occurrences of CARS.

Referencing the Internal Count of a Database Array
It is sometimes necessary to reference a multiple-value field or a periodic group without knowing how many
values/occurrences exist in a given record. Adabas maintains an internal count of the number of values in each
multiple-value field and the number of occurrences of each periodic group. This count may be read in a READ
statement by specifying "C*" immediately before the field name.

The count is returned in format/length N3. See Referencing the Internal Count for a Database Array in the
Statements documentation for further details.

Examples:

C*LANGUAGES Returns the number of values of the multiple-value field LANGUAGES.

C*CARS Returns the number of occurrences of the periodic group CARS.

C*SERVICING(1) Returns the number of values of the multiple-value field SERVICING in the first
occurrence of a periodic group (assuming that SERVICING is a multiple-value field
within a periodic group.)

43Copyright © Software AG 2003

Referencing Multiple-Value Fields Within Periodic GroupsDatabase Arrays

DEFINE DATA Views
To be able to use database fields in a Natural program, you must specify the fields in a view.

The following topics are covered:

Use of Database Views
Defining a Database View

Use of Database Views
To be able to use database fields in a Natural program, you must specify the fields in a view.

In the view, you specify

the name of the Data Definition Module (DDM) from which the fields are taken, and
the names of the database fields themselves (that is, their long names, not their database-internal short
names).

Defining a Database View
You define such a database view either

within the DEFINE DATA statement of the program, or
in a local data area (LDA) or a global data area (GDA) outside the program,
with the DEFINE DATA statement referencing that data area (as described in the section Defining Fields.

At Level 1, you specify the view name as follows:

 1 view-name VIEW OF ddm-name

where
view-name is the name you choose for the view,
ddm-name is the name of the DDM from which the fields specified in the view are taken.

At Level 2, you specify the names of the database fields from the DDM.

In the illustration below, the name of the view is "ABC", and it comprises the fields NAME, FIRST-NAME and
PERSONNEL-ID from the DDM "XYZ".

Copyright © Software AG 200344

DEFINE DATA ViewsDEFINE DATA Views

The format and length of a database field need not be specified in the view, as these are already defined in the
underlying DDM.

The view may comprise an entire DDM or only a subset of it. The order of the fields in the view need not be the
same as in the underlying DDM.

The view name is used in database access statements to determine which database is to be accessed, as described
in Statements for Database Access.

45Copyright © Software AG 2003

Defining a Database ViewDEFINE DATA Views

Statements for Database Access
To read data from a database, the following statements are available:

READ Select a range of records from a database in a specified sequence.

FIND Select from a database those records which meet a specified search criterion.

HISTOGRAM
Read only the values of one database field, or determine the number of records which meet a
specified search criterion.

READ Statement
The following topics are covered:

Use of READ Statement
Basic Syntax of READ Statement
Limiting the Number of Records to be Read
STARTING/ENDING Clauses
WHERE Clause
Further Example of READ Statement

Use of READ Statement

The READ statement is used to read records from a database. The records can be retrieved from the database

in the order in which they are physically stored in the database
(READ IN PHYSICAL SEQUENCE), or
in the order of Adabas Internal Sequence Numbers
(READ BY ISN), or
in the order of the values of a descriptor field
(READ IN LOGICAL SEQUENCE).

In this document, only READ IN LOGICAL SEQUENCE is discussed, as it is the most frequently used form of
the READ statement.

For information on the other two options, please refer to the description of the READ statement in the Natural
Statements documentation.

Basic Syntax of READ Statement

The basic syntax of the READ statement is:

READ view IN LOGICAL SEQUENCE BY descriptor

or shorter:

READ view LOGICAL BY descriptor

Copyright © Software AG 200346

Statements for Database AccessStatements for Database Access

view is the name of a view defined in the DEFINE DATA statement (as explained in DEFINE DATA Views).

descriptor is the name of a database field defined in that view. The values of this field determine the order in
which the records are read from the database.

If you specify a descriptor, you need not specify the keyword "LOGICAL":

READ view BY descriptor

If you do not specify a descriptor, the records will be read in the order of values of the field defined as default
descriptor (under "Default Sequence") in the DDM. However, if you specify no descriptor, you must specify the
keyword"LOGICAL":

READ view LOGICAL

Example:

 ** Example Program ’READX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 JOB-TITLE
 END-DEFINE
 READ (6) MYVIEW BY NAME
 DISPLAY NAME PERSONNEL-ID JOB-TITLE
 END-READ
 END

With the READ statement in the above example, records from the EMPLOYEES file are read in alphabetical
order of their last names.

The above program will produce the following output, displaying the information of each employee in
alphabetical order of the employees’ last names:

 Page 1 99-08-19 13:16:04

 NAME PERSONNEL CURRENT
 ID POSITION
 -------------------- --------- -------------------------

 ABELLAN 60008339 MAQUINISTA
 ACHIESON 30000231 DATA BASE ADMINISTRATOR
 ADAM 50005800 CHEF DE SERVICE
 ADKINSON 20008800 PROGRAMMER
 ADKINSON 20009800 DBA
 ADKINSON 2001100

If you wanted to read the records to create a report with the employees listed in sequential order by date of birth,
the appropriate READ statement would be:

 READ MYVIEW BY BIRTH

47Copyright © Software AG 2003

Basic Syntax of READ StatementStatements for Database Access

You can only specify a field which is defined as a "descriptor" in the underlying DDM (it can also be a
subdescriptor, superdescriptor or hyperdescriptor).

Limiting the Number of Records to be Read

As shown in the previous example program, you can limit the number of records to be read by specifying a
number in parentheses after the keyword READ:

 READ (6) MYVIEW BY NAME

In that example, the READ statement would read no more than 6 records.

Without the limit notation, the above READ statement would read all records from the EMPLOYEES file in the
order of last names from A to Z.

STARTING/ENDING Clauses

The READ statement also allows you to qualify the selection of records based on the value of a descriptor field.
With an EQUAL TO/STARTING FROM option in the BY or WITH clause, you can specify the value at which
reading should begin. By adding a THRU/ENDING AT option, you can also specify the value in the logical
sequence at which reading should end.

For example, if you wanted a list of those employees in the order of job titles starting with "TRAINEE" and
continuing on to "Z", you would use one of the following statements:

 READ MYVIEW WITH JOB-TITLE = ’TRAINEE’
 READ MYVIEW WITH JOB-TITLE STARTING from ’TRAINEE’
 READ MYVIEW BY JOB-TITLE = ’TRAINEE’
 READ MYVIEW BY JOB-TITLE STARTING from ’TRAINEE’

Note that the value to the right of the equal sign (=) or STARTING FROM option must be enclosed in
apostrophes. If the value is numeric, this text notation is not required.

If a BY option is used, a WITH option cannot be used and vice versa.

The sequence of records to be read can be even more closely specified by adding an end limit with a THRU or
ENDING AT clause.

To read just the records with the job title "TRAINEE", you would specify:

 READ MYVIEW BY JOB-TITLE STARTING from ’TRAINEE’ THRU ’TRAINEE’
 READ MYVIEW WITH JOB-TITLE EQUAL TO ’TRAINEE’
 ENDING AT ’TRAINEE’

To read just the records with job titles that begin with "A" or "B", you would specify:

 READ MYVIEW BY JOB-TITLE = ’A’ THRU ’C’
 READ MYVIEW WITH JOB-TITLE STARTING from ’A’ ENDING AT ’C’

The values are read up to and including the value specified after THRU/ENDING AT. In the two examples
above, all records with job titles that begin with "A" or "B" are read; if there were a job title "C", this would also
be read, but not the next higher value "CA".

WHERE Clause

The WHERE clause may be used to further qualify which records are to be read.

Copyright © Software AG 200348

Statements for Database AccessLimiting the Number of Records to be Read

For instance, if you wanted only those employees with job titles starting from "TRAINEE" who are paid in US
currency, you would specify:

 READ MYVIEW WITH JOB-TITLE = ’TRAINEE’
 WHERE CURR-CODE = ’USD’

The WHERE clause can also be used with the BY clause as follows:

 READ MYVIEW BY NAME
 WHERE SALARY = 20000

The WHERE clause differs from the BY/WITH clause in two respects:

The field specified in the WHERE clause need not be a descriptor.
The expression following the WHERE option is a logical condition.

The following logical operators are possible in a WHERE clause:

EQUAL EQ =

NOT EQUAL TO NE ¬=

LESS THAN LT <

LESS THAN OR EQUAL TO LE <=

GREATER THAN GT >

GREATER THAN OR EQUAL TO GE >=

The following program illustrates the use of the STARTING FROM, ENDING AT and WHERE clauses:

 ** Example Program ’READX02’
 DEFINE DATA LOCAL
 1 MYEMP VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 INCOME (1:2)
 3 CURR-CODE
 3 SALARY
 3 BONUS (1:1)
 END-DEFINE
 *
 READ (3) MYVIEW WITH JOB-TITLE = ’TRAINEE’ THRU ’TRAINEE’
 WHERE CURR-CODE (*) = ’USD’
 DISPLAY NOTITLE NAME / JOB-TITLE 5X INCOME (1:2)
 SKIP 1
 END-READ
 END

It produces the following output:

49Copyright © Software AG 2003

WHERE ClauseStatements for Database Access

 NAME INCOME
 CURRENT
 POSITION CURRENCY ANNUAL BONUS
 CODE SALARY
 ------------------------- -------- ---------- ----------

 SENKO USD 23000 0
 TRAINEE USD 21800 0

 BANGART USD 25000 0
 TRAINEE USD 23000 0

 LINCOLN USD 24000 0
 TRAINEE USD 22000 0

Further Example of READ Statement

See the following example program in library SYSEXPG:

READX03

FIND Statement
The following topics are covered:

Use of FIND Statement
Basic Syntax of FIND Statement
Limiting the Number of Records to be Processed
WHERE Clause
Example of WHERE Clause
IF NO RECORDS FOUND Condition
Example of IF NO RECORDS FOUND Clause
Further Examples of FIND Statement

Use of FIND Statement

The FIND statement is used to select from a database those records which meet a specified search criterion.

Basic Syntaxof FIND Statement

The basic syntax of the FIND statement is:

FIND RECORDS IN view WITH field = value

or shorter:

FIND view WITH field = value

Copyright © Software AG 200350

Statements for Database AccessFIND Statement

where
view is the name of a view defined in the DEFINE DATA statement (as explained in section DEFINE DATA
Views),
field is the name of a database field defined in that view.

You can only specify a field which is defined as a "descriptor" in the underlying DDM (it can also be a
subdescriptor, superdescriptor, hyperdescriptor or phonetic descriptor).

For the complete syntax, refer to the FIND statement documentation.

Limiting the Number of Records to be Processed

In the same way as with the READ statement, you can limit the number of records to be processed by specifying
a number in parentheses after the keyword FIND:

 FIND (6) RECORDS IN MYVIEW WITH NAME = ’CLEGG’

In the above example, only the first 6 records that meet the search criterion would be processed.

Without the limit notation, all records that meet the search criterion would be processed.

Note:
If the FIND statement contains a WHERE clause (see below), records which are rejected as a result of the
WHERE clause are not counted against the limit.

WHERE Clause

With the WHERE clause of the FIND statement, you can specify an additional selection criterion which is
evaluated after a record (selected with the WITH clause) has been read and before any processing is performed
on the record.

Example of WHERE Clause
 ** Example Program ’FINDX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 JOB-TITLE
 2 CITY
 END-DEFINE
 *
 FIND MYVIEW WITH CITY = ’PARIS’
 WHERE JOB-TITLE = ’INGENIEUR COMMERCIAL’
 DISPLAY NOTITLE CITY JOB-TITLE PERSONNEL-ID NAME
 END-FIND
 END

Note that in this example only those records which meet the criteria of the WITH clause and the WHERE clause
are processed in the DISPLAY statement.

51Copyright © Software AG 2003

Limiting the Number of Records to be ProcessedStatements for Database Access

 CITY CURRENT PERSONNEL NAME
 POSITION ID
 -------------------- ------------------------- --------- --------------------

 PARIS INGENIEUR COMMERCIAL 50007300 CAHN
 PARIS INGENIEUR COMMERCIAL 50006500 MAZUY
 PARIS INGENIEUR COMMERCIAL 50004400 VALLY
 PARIS INGENIEUR COMMERCIAL 50002800 BRETON
 PARIS INGENIEUR COMMERCIAL 50001000 GIGLEUX

IF NO RECORDS FOUND Condition

If no records are found that meet the search criteria specified in the WITH and WHERE clauses, the statements
within the FIND processing loop are not executed (for the previous example, this would mean that the DISPLAY
statement would not be executed and consequently no employee data would be displayed).

However, the FIND statement also provides an IF NO RECORDS FOUND clause, which allows you to specify
processing you wish to be performed in the case that no records meet the search criteria.

Example of IF NO RECORDS FOUND Clause
 ** Example Program ’FINDX02’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 END-DEFINE
 *
 FIND MYVIEW WITH NAME = ’BLACKMORE’
 IF NO RECORDS FOUND
 WRITE ’NO PERSON FOUND.’
 END-NOREC
 DISPLAY NAME FIRST-NAME
 END-FIND
 END

The above program selects all records in which the field NAME contains the value "BLACKMORE". For each
selected record, the name and first name are displayed. If no record with NAME = ’BLACKMORE’ is found on
the file, the WRITE statement within the IF NO RECORDS FOUND clause is executed:

 Page 1 97-08-19 11:44:00

 NAME FIRST-NAME
 -------------------- --------------------

 NO PERSON FOUND.

Further Examples of FIND Statement

See the following example programs in library SYSEXPG:

Copyright © Software AG 200352

Statements for Database AccessIF NO RECORDS FOUND Condition

FINDX07
FINDX08
FINDX09
FINDX10
FINDX11

HISTOGRAM Statement
The following topics are covered:

Use of HISTOGRAM Statement
Syntaxof HISTOGRAM Statement
Limiting the Number of Values to be Read
STARTING/ENDING Clauses
WHERE Clause
Example of HISTOGRAM Statement

Use of HISTOGRAM Statement

The HISTOGRAM statement is used to either read only the values of one database field, or determine the
number of records which meet a specified search criterion.

The HISTOGRAM statement does not provide access to any database fields other than the one specified in the
HISTOGRAM statement.

Syntax of HISTOGRAM Statement

The basic syntax of the HISTOGRAM statement is:

HISTOGRAM VALUE IN view FOR field

or shorter:

HISTOGRAM view FOR field

where
view is the name of a view defined in the DEFINE DATA statement (as explained earlier in section DEFINE
DATA Views),
field is the name of the database field defined in that view.

For the complete syntax, refer to the HISTOGRAM statement documentation.

Limiting the Number of Values to be Read

In the same way as with the READ statement, you can limit the number of values to be read by specifying a
number in parentheses after the keyword HISTOGRAM:

 HISTOGRAM (6) MYVIEW FOR NAME

53Copyright © Software AG 2003

HISTOGRAM StatementStatements for Database Access

In the above example, only the first 6 values of the field NAME would be read.

Without the limit notation, all values would be read.

STARTING/ENDING Clauses

Like the READ statement, the HISTOGRAM statement also provides a STARTING FROM clause and an
ENDING AT (or THRU) clause to narrow down the range of values to be read by specifying a starting value and
ending value.

Examples:

 HISTOGRAM MYVIEW FOR NAME STARTING from ’BOUCHARD’
 HISTOGRAM MYVIEW FOR NAME STARTING from ’BOUCHARD’ ENDING AT ’LANIER’
 HISTOGRAM MYVIEW FOR NAME from ’BLOOM’ THRU ’ROESER’

WHERE Clause

The HISTOGRAM statement also provides a WHERE clause which may be used to specify an additional
selection criterion that is evaluated after a value has been read and before any processing is performed on the
value. The field specified in the WHERE clause must be the same as in the main clause of the HISTOGRAM
statement.

Example of HISTOGRAM Statement
 ** Example Program ’HISTOX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 CITY
 END-DEFINE
 *
 LIMIT 8
 HISTOGRAM MYVIEW CITY STARTING from ’M’
 DISPLAY NOTITLE CITY ’NUMBER OF/PERSONS’ *NUMBER *COUNTER
 END-HISTOGRAM
 END

In this program, the system variables *NUMBER and *COUNTER are also evaluated by the HISTOGRAM
statement, and output with the DISPLAY statement. *NUMBER contains the number of database records that
contain the last value read; *COUNTER contains the total number of values which have been read.

 CITY NUMBER OF CNT
 PERSONS
 -------------------- --------- ---------

 MADISON 3 1
 MADRID 41 2
 MAILLY LE CAMP 1 3
 MAMERS 1 4
 MANSFIELD 4 5
 MARSEILLE 2 6
 MATLOCK 1 7
 MELBOURNE 2 8

Copyright © Software AG 200354

Statements for Database AccessSTARTING/ENDING Clauses

Multi-Fetch Clause
This document covers the multi-fetch record retrieval functionality for Adabas databases. This feature is
available both under Windows/UNIX and on mainframes, however, there are differences in the usage of
multi-fetch on those systems.

The multi-fetch functionality is only supported for Adabas.

The following topics are covered:

Multi-Fetch on Mainframes
Multi-Fetch under Windows and UNIX

Multi-Fetch on Mainframes
The following topics are covered:

Use of Multi-Fetch Feature on Mainframes
Considerations for Multi-Fetch Usage
Size of the Multi-Fetch Buffer
Support of TEST DBLOG

Use of Multi-Fetch Feature on Mainframes

In standard mode, Natural does not read multiple records with a single database call; it always operates in a
one-record-per-fetch mode. This kind of operation is solid and stable, but can take some time if a large number
of database records are being processed.

To improve the performance of those programs, you can use the Multi-Fetch clause in the FIND, READ or
HISTOGRAM statements. This allows you to define the Multi-Fetch-Factor, a numeric value that specifies the
number of records read per database access.

FIND

READ MULTI-FETCH [OF] <multi-fetch-factor>

HISTOGRAM

Where the <multi-fetch-factor> is either a constant or a variable with a format integer (I4).

At statement execution time, the runtime checks if a <multi-fetch-factor> greater than 1 is supplied for the
database statement.

If the <multi-fetch-factor> is

55Copyright © Software AG 2003

Multi-Fetch ClauseMulti-Fetch Clause

less than or equal to 1 the database call is continued in the usual one-record-per-access mode.

greater than 1

the database call is prepared dynamically to read multiple records (e.g. 10) with a
single database access into an auxiliary buffer (multi-fetch buffer). If successful, the
first record is transferred into the underlying data view. Upon the execution of the
next loop, the data view is filled directly from the multi-fetch buffer, without database
access. After all records are fetched from the multi-fetch buffer, the next loop results
in the next record set being read from the database. If the database loop is terminated
(either by end-of-records, ESCAPE, STOP, etc.), the content of the multi-fetch buffer
is released.

Considerations for Multi-Fetch Usage

A multi-fetch access is only supported for a browse loop; in other words, when the records are read with "no
hold".
The program does not receive "fresh" records from the database for every loop, but operates with images
retrieved at the most recent multi-fetch access.
If a loop repositioning is triggered for a READ / HISTOGRAM statement, the content of the multi-fetch
buffer at that point is released.
If a dynamic direction change (IN DYNAMIC...SEQUENCE) is coded for a READ / HISTOGRAM
statement, the multi-fetch feature is not possible and leads to a corresponding syntax error at compilation.
The first record of a FIND loop is retrieved with the initial S1 command. Since Adabas multi-fetch is just
defined for all kinds of Lx commands, it first can be used from the second record.
The size occupied by a database loop in the multi-fetch buffer is determined according to the rule:

((record-buffer-length + isn-buffer-entry-length) * multi-fetch-factor) + 4 + header-length

=

((size-of-view-fields + 20) * multi-fetch-factor) + 4 + 128

In order to keep the required space small, the multi-fetch factor is automatically reduced at runtime, if
the "loop-limit" (e.g. READ (2) ..) is smaller, but only if no WHERE clause is involved;
the "ISN quantity" (for FIND statement only) is smaller;
the resulting size of the Record-Buffer or ISN-Buffer exceeds 32KB.

Moreover, the multi-fetch option is completely ignored at runtime, if
the multi-fetch factor contains a value less equal 1;
the multi-fetch buffer is not available or does not have enough free space (for more details, refer to
Size of the Multi-Fetch Buffer below).

Size of the Multi-Fetch Buffer

In order to control the amount of storage available for multi-fetch purposes, you can limit the maximum size of
the multi-fetch buffer.

Inside the NATPARM definition, you can make a static assignment via the parameter macro NTDS:

NTDS MULFETCH,nn

At session start, you can also use the profile parameter DS:

DS=(MULFETCH,nn)

Copyright © Software AG 200356

Multi-Fetch ClauseConsiderations for Multi-Fetch Usage

where "nn" represents the complete size allowed to be allocated for multi-fetch purposes (in KB). The value may
be set in the range (0 - 1024), with a default value of 64. Setting a high value does not necessarily mean having a
buffer allocated of that size, since the multi-fetch handler makes dynamic allocations and resizes, depending on
what is really needed to execute a multi-fetch database statement. If no multi-fetch database statement is
executed in a Natural session, the multi-fetch buffer will never be created, regardless of which value was set.

If value 0 is specified, the multi-fetch processing is completely disabled, no matter if a database access statement
contains a "MULTI-FETCH OF .." clause or not. This allows to completely switch off all multi-fetch activities
when there is not enough storage available in the current environment or for debugging purposes.

Note:
Due to existing Adabas limitations, you may not have a Record-Buffer or ISN-Buffer larger than 32 KB.
Therefore you need only a maximum of 64 KB space in the multi-fetch buffer for a single FIND, READ or
HISTOGRAM loop. The required value setting for the multi-fetch buffer depends on the number of nested
database loops you want to serve with multi-fetch.

Support of TEST DBLOG

When multi-fetch is used, real database calls are only submitted to get a new set of records. However, if
somebody likes to debug his program with the TEST DBLOG facility, he would neither be able to look at the
records processed by his program nor to SNAP at a specific position, because they are filled internally from the
multi-fetch buffer.

In order to improve this situation, the multi-fetch handler also triggers calls to TEST DBLOG for every record
moved from the multi-fetch buffer. To make these special database calls visible (in the TEST DBLOG list), the
command Option1 is set to "<".

Example: TEST DBLOG List Break-Out

No Cmd DB FNR Rsp ISN ISQ CID CID(Hex) OP Pgm Line
2 S1 177 4 89 6 ? ?? 04000101 TEST006A 0400
3 L1 177 4 108 6 ? ?? 04000101 MN TEST006A 0400
4 L1 177 4 299 6 ? ?? 04000101 <N TEST006A 0400
5 L1 177 4 418 6 ? ?? 04000101 <N TEST006A 0400

Where column No represents the following:

2 is an ordinary database call without any multi-fetching.

3

is a "real" database call that reads a set of records via multi-fetch (see "M" in column OP) and returns
the first record back to the program. The data displayed in the Record Buffer and ISN Buffer do not
correspond to the statement in the program, because they contain the values (especially for the
ISN-Buffer) of all the records being fetched by the database. The data returned to the program is just the
first record, the remaining data will be stored in the multi-fetch buffer.

4-5
are "no real" database calls, but only entries that document that the program has received these records
from the multi-fetch buffer (see "<" in column OP). All the data in the CB, FB, RB, SB, VB and IB are
exactly the same, like when they were fetched from the database.

Multi-Fetch under Windows and UNIX
By default, Natural uses single-fetch to retrieve data from Adabas databases. This default can be configured
using the profile parameter MFSET.

57Copyright © Software AG 2003

Multi-Fetch under Windows and UNIXMulti-Fetch Clause

Values "ON" (multi-fetch) and "OFF" (single-fetch) define the default behavior. If MFSET is set to "NEVER",
Natural always uses single-fetch mode and ignores any settings at statement level.

Multi-fetch processing is supported for the following statements that do not involve database modification:

FIND
READ
HISTOGRAM

To minimize the number of required Adabas calls, several results are retrieved in one call.

If nested database loops that refer to the same Adabas file contain UPDATE statements in one of the inner loops,
Natural continues processing the outer loops with the updated values. This implies in multi-fetch mode, that an
outer logical READ loop has to be repositioned if an inner database loop updates the value of the descriptor that
is used for sequence control in the outer loop. If this attempt leads to a conflict for the current descriptor, an error
is returned. To avoid this situation, we recommend that you disable multi-fetch in the outer database loops.

In general, multi-fetch mode improves performance when accessing Adabas databases. In some cases, however,
it might be advantageous to use single-fetch to enhance performance, especially if database modifications are
involved.

The default processing mode can be overridden at statement level. For further information on the syntax, see the
FIND, READ or HISTOGRAM statements, subsection MULTI-FETCH Clause.

Copyright © Software AG 200358

Multi-Fetch ClauseMulti-Fetch under Windows and UNIX

Database Processing Loops
This document discusses processing loops required to process data that have been selected from a database as a
result of a FIND, READ or HISTOGRAM statement.

The following topics are covered:

Creation of Database Processing Loops
Hierarchies of Processing Loops
Example of Nested FIND Loops Accessing the Same File
Further Examples of Nested READ and FIND Statements

Creation of Database Processing Loops
Natural automatically creates the necessary processing loops which are required to process data that have been
selected from a database as a result of a FIND, READ or HISTOGRAM statement.

Example:

In the following exampe, the FIND loop selects all records from the EMPLOYEES file in which the field NAME
contains the value "ADKINSON" and processes the selected records. In this example, the processing consists of
displaying certain fields from each record selected.

 ** Example Program ’FINDX03’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 CITY
 END-DEFINE
 *
 FIND MYVIEW WITH NAME = ’ADKINSON’
 DISPLAY NAME FIRST-NAME CITY
 END-FIND
 END

If the FIND statement contained a WHERE clause in addition to the WITH clause, only those records that were
selected as a result of the WITH clause and met the WHERE criteria would be processed.

The following diagram illustrates the flow logic of a database processing loop:

59Copyright © Software AG 2003

Database Processing LoopsDatabase Processing Loops

Hierarchies of Processing Loops
The use of multiple FIND and/or READ statements creates a hierarchy of processing loops, as shown in the
following example:

Example of Processing Loop Hierarchy
 ** Example Program ’FINDX04’
 DEFINE DATA LOCAL
 1 PERSONVIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 1 AUTOVIEW VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
 2 MODEL
 END-DEFINE
 *

Copyright © Software AG 200360

Database Processing LoopsHierarchies of Processing Loops

 EMP. FIND PERSONVIEW WITH NAME = ’ADKINSON’
 VEH. FIND AUTOVIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMP.)
 DISPLAY NAME MAKE MODEL
 END-FIND
 END-FIND
 END

The above program selects from the EMPLOYEES file all people with the name "ADKINSON". Each record
(person) selected is then processed as follows:

1. The second FIND statement is executed to select the automobiles from the VEHICLES file, using as
selection criterion the PERSONNEL-IDs from the records selected from the EMPLOYEES file with the
first FIND statement.

2. The NAME of each person selected is displayed; this information is obtained from the EMPLOYEES file.
The MAKE and MODEL of each automobile owned by that person is also displayed; this information is
obtained from the VEHICLES file.

The second FIND statement creates an inner processing loop within the outer processing loop of the first FIND
statement, as shown in the following diagram.

The diagram illustrates the flow logic of the hierarchy of processing loops in the previous example program:

61Copyright © Software AG 2003

Example of Processing Loop HierarchyDatabase Processing Loops

Example of Nested FIND Loops Accessing the Same File
It is also possible to construct a processing loop hierarchy in which the same file is used at both levels of the
hierarchy:

 ** Example Program ’FINDX05’
 DEFINE DATA LOCAL
 1 PERSONVIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME

Copyright © Software AG 200362

Database Processing LoopsExample of Nested FIND Loops Accessing the Same File

 2 CITY
 1 #NAME (A40)
 END-DEFINE
 *
 WRITE TITLE LEFT JUSTIFIED
 ’PEOPLE IN SAME CITY AS:’ #NAME / ’CITY:’ CITY SKIP 1
 FIND PERSONVIEW WITH NAME = ’JONES’
 WHERE FIRST-NAME = ’LAUREL’
 compress NAME FIRST-NAME INTO #NAME
 FIND PERSONVIEW WITH CITY = CITY
 DISPLAY NAME FIRST-NAME CITY
 END-FIND
 END-FIND
 END

The above program first selects all people with name "JONES" and first name "LAUREL" from the
EMPLOYEES file. Then all who live in the same city are selected from the EMPLOYEES file and a list of these
people is created. All field values displayed by the DISPLAY statement are taken from the second FIND
statement.

 PEOPLE IN SAME CITY AS: JONES LAUREL
 CITY: BALTIMORE

 NAME FIRST-NAME CITY
 -------------------- -------------------- --------------------

 JENSEN MARTHA BALTIMORE
 LAWLER EDDIE BALTIMORE
 FORREST CLARA BALTIMORE
 ALEXANDER GIL BALTIMORE
 NEEDHAM SUNNY BALTIMORE
 ZINN CARLOS BALTIMORE
 JONES LAUREL BALTIMORE

Further Examples of Nested READ and FIND Statements
See the following example programs in library SYSEXPG:

READX04
LIMITX01

63Copyright © Software AG 2003

Further Examples of Nested READ and FIND StatementsDatabase Processing Loops

Database Update - Transaction Processing
This document describes how Natural performs database updating operations based on transactions.

The following topics are covered:

Logical Transaction
Example of STORE Statement
Record Hold Logic
Example of GET Statement
Backing Out a Transaction
Restarting a Transaction
Example of Using Transaction Data to Restart a Transaction

Logical Transaction
Natural performs database updating operations based on transactions, which means that all database update
requests are processed in logical transaction units. A logical transaction is the smallest unit of work (as defined
by you) which must be performed in its entirety to ensure that the information contained in the database is
logically consistent.

A logical transaction may consist of one or more update statements (DELETE, STORE, UPDATE) involving
one or more database files. A logical transaction may also span multiple Natural programs.

A logical transaction begins when a record is put on "hold"; Natural does this automatically when the record is
read for updating, for example, if a FIND loop contains an UPDATE or DELETE statement.

The end of a logical transaction is determined by an END TRANSACTION statement in the program. This
statement ensures that all updates within the transaction have been successfully applied, and releases all records
that were put on "hold" during the transaction.

Example:

 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 END-DEFINE
 FIND MYVIEW WITH NAME = ’SMITH’
 DELETE
 END TRANSACTION
 END-FIND
 END

Each record selected would be put on "hold", deleted, and then - when the END TRANSACTION statement is
executed - released from "hold".

Note:
The Natural profile parameter OPRB, as set by the Natural administrator, determines whether or not Natural will
generate an END TRANSACTION statement at the end of each Natural program. Ask your Natural
administrator for details.

Copyright © Software AG 200364

Database Update - Transaction ProcessingDatabase Update - Transaction Processing

Example of STORE Statement
See the following example program in library SYSEXPG:

STOREX01

Record Hold Logic
If Natural is used with Adabas, any record which is to be updated will be placed in "hold" status until an END
TRANSACTION or BACKOUT TRANSACTION statement is issued or the transaction time limit is exceeded.

When a record is placed in "hold" status for one user, the record is not available for update by another user.
Another user who wishes to update the same record will be placed in "wait" status until the record is released
from "hold" when the first user ends or backs out his/her transaction.

To prevent users from being placed in wait status, the session parameter WH (Wait Hold) can be used (see the
Natural Parameter Reference documentation).

When you use update logic in a program, you should consider the following:

The maximum time that a record can be in hold status is determined by the Adabas transaction time limit
(Adabas parameter TT). If this time limit is exceeded, you will receive an error message and all database
modifications done since the last END TRANSACTION will be made undone.
The number of records on hold and the transaction time limit are affected by the size of a transaction, that
is, by the placement of the END TRANSACTION statement in the program. Restart facilities should be
considered when deciding where to issue an END TRANSACTION. For example, if a majority of records
being processed are not to be updated, the GET statement is an efficient way of controlling the "holding" of
records. This avoids issuing multiple END TRANSACTION statements and reduces the number of ISNs on
hold. When you process large files, you should bear in mind that the GET statement requires an additional
Adabas call. An example of a GET statement is shown below.

Example of GET Statement
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 SALARY (1)
 END-DEFINE
 RD. READ EMPLOY-VIEW BY NAME
 IF SALARY (1) > 30000
 GE. GET EMPLOY-VIEW *ISN (RD.)
 compute SALARY (1) = SALARY (1) * 1.15
 UPDATE (GE.)
 END TRANSACTION
 END-IF
 END-READ
 END

On mainframe computers, the placing of records in "hold" status is also controlled by the profile parameter RI, as
set by the Natural administrator.

65Copyright © Software AG 2003

Example of STORE StatementDatabase Update - Transaction Processing

Backing Out a Transaction
During an active logical transaction, that is, before the END TRANSACTION statement is issued, you can
cancel the transaction by using a BACKOUT TRANSACTION statement. The execution of this statement
removes all updates that have been applied (including all records that have been added or deleted) and releases
all records held by the transaction.

Restarting a Transaction
With the END TRANSACTION statement, you can also store transaction-related information. If processing of
the transaction terminates abnormally, you can read this information with a GET TRANSACTION DATA
statement to ascertain where to resume processing when you restart the transaction.

Example of Using Transaction Data to Restart a
Transaction
The following program updates the EMPLOYEES and VEHICLES files. After a restart operation, the user is
informed of the last EMPLOYEES record successfully processed. The user can resume processing from that
EMPLOYEES record. It would also be possible to set up the restart transaction message to include the last
VEHICLES record successfully updated before the restart operation.

 ** Example Program ’GETTRX01’
 DEFINE DATA LOCAL
 01 PERSON VIEW OF EMPLOYEES
 02 PERSONNEL-ID (A8)
 02 NAME (A20)
 02 FIRST-NAME (A20)
 02 MIDDLE-I (A1)
 02 CITY (A20)
 01 AUTO VIEW OF VEHICLES
 02 PERSONNEL-ID (A8)
 02 MAKE (A20)
 02 MODEL (A20)
 01 ET-DATA
 02 #APPL-ID (A8) INIT <’ ’>
 02 #USER-ID (A8)
 02 #PROGRAM (A8)
 02 #DATE (A10)
 02 #TIME (A8)
 02 #PERSONNEL-NUMBER (A8)
 END-DEFINE
 *
 GET TRANSACTION DATA #APPL-ID #USER-ID #PROGRAM
 #DATE #TIME #PERSONNEL-NUMBER
 *
 IF #APPL-ID NOT = ’NORMAL’ /* IF LAST EXECUTION ENDED ABNORMALLY
 AND #APPL-ID NOT = ’ ’
 INPUT (AD=OIL)
 // 20T ’*** LAST SUCCESSFUL TRANSACTION ***’ (I)
 / 20T ’***********************************’
 /// 25T ’APPLICATION:’ #APPL-ID
 / 32T ’USER:’ #USER-ID
 / 29T ’PROGRAM:’ #PROGRAM
 / 24T ’COMPLETED ON:’ #DATE ’AT’ #TIME
 / 20T ’PERSONNEL NUMBER:’ #PERSONNEL-NUMBER
 END-IF
 REPEAT

Copyright © Software AG 200366

Database Update - Transaction ProcessingBacking Out a Transaction

 INPUT (AD=MIL) // 20T ’ENTER PERSONNEL NUMBER:’ #PERSONNEL-NUMBER
 IF #PERSONNEL-NUMBER = 99999999
 ESCAPE bottom
 END-IF
 FIND1. FIND PERSON WITH PERSONNEL-ID = #PERSONNEL-NUMBER
 IF NO RECORDS FOUND
 REINPUT ’SPECIFIED NUMBER DOES NOT EXIST; ENTER ANOTHER ONE.’
 END-NOREC
 FIND2. FIND AUTO WITH PERSONNEL-ID = #PERSONNEL-NUMBER
 IF NO RECORDS FOUND
 WRITE ’PERSON DOES NOT OWN ANY CARS’
 END-NOREC
 IF *COUNTER (FIND1.) = 1 /* FIRST PASS THROUGH THE LOOP
 INPUT (AD=M)
 / 20T ’EMPLOYEES/AUTOMOBILE DETAILS’ (I)
 / 20T ’----------------------------’
 /// 20T ’NUMBER:’ PERSONNEL-ID (AD=O)
 / 22T ’NAME:’ NAME ’ ’ FIRST-NAME ’ ’ MIDDLE-I
 / 22T ’CITY:’ CITY
 / 22T ’MAKE:’ MAKE
 / 21T ’MODEL:’ MODEL
 UPDATE (FIND1.) /* UPDATE THE EMPLOYEES FILE
 ELSE /* SUBSEQUENT PASSES THROUGH THE LOOP
 INPUT NO ERASE (AD=M) //////// 20T MAKE / 20T MODEL
 END-IF
 UPDATE (FIND2.) /* UPDATE THE VEHICLES FILE
 MOVE *APPLIC-ID TO #APPL-ID
 MOVE *INIT-USER TO #USER-ID
 MOVE *PROGRAM TO #PROGRAM
 MOVE *DAT4E TO #DATE
 MOVE *TIME TO #TIME
 END TRANSACTION #APPL-ID #USER-ID #PROGRAM
 #DATE #TIME #PERSONNEL-NUMBER
 END-FIND /* FOR VEHICLES (FIND2.)
 END-FIND /* FOR EMPLOYEES (FIND1.)
 END-REPEAT /* FOR REPEAT
 STOP /* Simulate abnormal transaction end
 END TRANSACTION ’NORMAL ’
 END

67Copyright © Software AG 2003

Example of Using Transaction Data to Restart a TransactionDatabase Update - Transaction Processing

Selecting Records Using ACCEPT/REJECT
This document discusses the statements ACCEPT and REJECT which are used to select records based on
user-specified logical criteria.

The following topics are covered:

Statements Usable with ACCEPT and REJECT
Example of ACCEPT Statement
Logical Condition Criteria in ACCEPT/REJECT Statements
Example of ACCEPT Statement with AND Operator
Example of REJECT Statement with OR Operator
Further Examples of ACCEPT and REJECT Statements

Statements Usable with ACCEPT and REJECT
The statements ACCEPT and REJECT can be used in conjunction with the database access statements:

READ
FIND
HISTOGRAM

Example of ACCEPT Statement
 ** Example Program ’ACCEPX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 CURR-CODE (1:1)
 2 SALARY (1:1)
 END-DEFINE
 READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = ’USD’
 ACCEPT IF SALARY (1) >= 40000
 DISPLAY NAME JOB-TITLE SALARY (1)
 END-READ
 END

 Page 1 97-08-13 17:26:33

 NAME CURRENT ANNUAL
 POSITION SALARY
 -------------------- ------------------------- ----------

 ADKINSON DBA 46700
 ADKINSON MANAGER 47000
 ADKINSON MANAGER 47000
 AFANASSIEV DBA 42800
 ALEXANDER DIRECTOR 48000
 ANDERSON MANAGER 50000
 ATHERTON ANALYST 43000
 ATHERTON MANAGER 40000

Copyright © Software AG 200368

Selecting Records Using ACCEPT/REJECTSelecting Records Using ACCEPT/REJECT

Logical Condition Criteria in ACCEPT/REJECT
Statements
The statements ACCEPT and REJECT allow you to specify logical conditions in addition to those that were
specified in WITH and WHERE clauses of the READ statement.

The logical condition criteria in the IF clause of an ACCEPT/REJECT statement are evaluated after the record
has been selected and read.

Logical condition operators include the following (see Logical Condition Criteria in the Natural Statements
documentation for more detailed information):

EQUAL EQ :=

NOT EQUAL TO NE ¬=

LESS THAN LT <

LESS EQUAL LE <=

GREATER THAN GT >

GREATER EQUAL GE >=

Logical condition criteria in ACCEPT/REJECT statements may also be connected with the Boolean operators
AND, OR, and NOT. Moreover, parentheses may be used to indicate logical grouping; see the following
examples.

Example of ACCEPT Statement with AND Operator
The following program illustrates the use of the Boolean operator AND in an ACCEPT statement.

 ** Example Program ’ACCEPX02’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 CURR-CODE (1:1)
 2 SALARY (1:1)
 END-DEFINE
 READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = ’USD’
 ACCEPT IF SALARY (1) >= 40000
 AND SALARY (1) <= 45000
 DISPLAY NAME JOB-TITLE SALARY (1)
 END-READ
 END

Example of REJECT Statement with OR Operator
The following program, which uses the Boolean operator OR in a REJECT statement, produces the same output
as the ACCEPT statement in the example above, as the logical operators are reversed.

69Copyright © Software AG 2003

Logical Condition Criteria in ACCEPT/REJECT StatementsSelecting Records Using ACCEPT/REJECT

 ** Example Program ’ACCEPX03’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 CURR-CODE (1:1)
 2 SALARY (1:1)
 END-DEFINE
 READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = ’USD’
 REJECT IF SALARY (1) < 40000
 OR SALARY (1) > 45000
 DISPLAY NAME JOB-TITLE SALARY (1)
 END-READ
 END

 Page 1 97-08-18 12:21:09

 NAME CURRENT ANNUAL
 POSITION SALARY
 -------------------- ------------------------- ----------

 AFANASSIEV DBA 42800
 ATHERTON ANALYST 43000
 ATHERTON MANAGER 40000

Further Examples of ACCEPT and REJECT Statements
See the following example programs in library SYSEXPG:

ACCEPX04
ACCEPX05
ACCEPX06

Copyright © Software AG 200370

Selecting Records Using ACCEPT/REJECTFurther Examples of ACCEPT and REJECT Statements

AT START/END OF DATA Statements
This document discusses the use of the statements AT START OF DATA and AT END OF DATA.

The following topics are covered:

AT START OF DATA Statement
AT END OF DATA Statement
Example of AT START OF DATA and AT END OF DATA Statements
Further Examples of AT START OF DATA and AT END OF DATA

AT START OF DATA Statement
The AT START OF DATA statement is used to specify any processing that is to be performed after the first of a
set of records has been read in a database processing loop.

The AT START OF DATA statement must be placed within the processing loop.

If the AT START OF DATA processing produces any output, this will be output before the first field value. By
default, this output is displayed left-justified on the page.

AT END OF DATA Statement
The AT END OF DATA statement is used to specify processing that is to be performed after all records for a
database processing loop have been processed.

The AT END OF DATA statement must be placed within the processing loop.

If the AT END OF DATA processing produces any output, this will be output after the last field value. By
default, this output is displayed left-justified on the page.

Example of AT START OF DATA and AT END OF
DATA Statements
The following example program illustrates the use of the statements AT START OF DATA and AT END OF
DATA. The system variable *TIME has been incorporated into the AT START OF DATA statement to display
the time of day. The system function OLD has been incorporated into the AT END OF DATA statement to
display the name of the last person selected.

 ** Example Program ’ATSTAX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 CITY
 2 NAME
 2 JOB-TITLE
 2 INCOME (1:1)
 3 CURR-CODE
 3 SALARY
 3 BONUS (1:1)
 END-DEFINE
 WRITE TITLE ’XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT’ /
 READ (3) MYVIEW BY CITY STARTING from ’E’
 DISPLAY GIVE SYSTEM FUNCTIONS

71Copyright © Software AG 2003

AT START/END OF DATA StatementsAT START/END OF DATA Statements

 NAME (AL=15) JOB-TITLE (AL=15) INCOME (1)
 AT START OF DATA
 WRITE ’RUN TIME:’ *TIME /
 END-START
 AT END OF DATA
 WRITE / ’LAST PERSON SELECTED:’ OLD (NAME) /
 END-ENDDATA
 END-READ
 AT END OF PAGE
 WRITE / ’AVERAGE SALARY:’ AVER (SALARY(1))
 END-ENDPAGE
 END

The program produces the following output:

 XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT

 NAME CURRENT INCOME
 POSITION
 CURRENCY ANNUAL BONUS
 CODE SALARY
 --------------- --------------- -------- ---------- --------

 RUN TIME: 11:18:58.2

 DUYVERMAN PROGRAMMER USD 34000 0
 PRATT SALES PERSON USD 38000 9000
 MARKUSH TRAINEE USD 22000 0

 LAST PERSON SELECTED: MARKUSH

 AVERAGE SALARY: 31333

Further Examples of AT START OF DATA and AT END
OF DATA
See the following example programs in library SYSEXPG:

ATENDX01
ATSTAX02
WRITEX09

Copyright © Software AG 200372

AT START/END OF DATA StatementsFurther Examples of AT START OF DATA and AT END OF DATA

Output of Data
This document discusses various aspects of how you can control the format of an output report created with
Natural, that is, the way in which the data are displayed.

The following topics are covered:

Layout of an Output Page
Statements DISPLAY and WRITE
Index Notation for Multiple-Value Fields and Periodic Groups
Page Titles and Page Breaks
Column Headers
Parameters to Influence the Output of Fields
Edit Masks - EM Parameter
Vertical Displays

73Copyright © Software AG 2003

Output of DataOutput of Data

Layout of an Output Page
This document gives an overview of the statements that may be used to define a specific layout for a report.

The following topics are covered:

Statements Influencing a Report Layout
General Layout Example

Statements Influencing a Report Layout
The following statements have an impact on the layout of the report:

Statement Function

WRITE
TITLE

With this statement, you can specify a page title, that is, text to be output at the top of a page.
By default, page titles are centered and not underlined.

WRITE
TRAILER

With this statement, you can specify a page trailer, that is, text to be output at the bottom of a
page. By default, the trailer lines are centered and not underlined.

AT TOP OF
PAGE

With this statement, you can specify any processing that is to be performed whenever a new
page of the report is started. Any output from this processing will be output below the page
title.

AT END OF
PAGE

With this statement, you can specify any processing that is to be performed whenever an
end-of-page condition occurs. Any output from this processing will be output below any page
trailer (as specified with the WRITE TRAILER statement).

AT START
OF DATA

With this statement, you specify processing that is to be performed after the first record has
been read in a database processing loop. Any output from this processing will be output before
the first field value.

AT END OF
DATA

With this statement, you specify processing that is to be performed after all records for a
processing loop have been processed. Any output from this processing will be output
immediately after the last field value.

DISPLAY /
WRITE

With these statements, you control the format in which the field values that have been read are
to be output. See section Statements DISPLAY and WRITE.

The relevance of the statements AT START OF DATA and AT END OF DATA for the output of data is
described under Database Access, AT START/END OF DATA Statements. The other statements listed above
are discussed in other parts of the section Output of Data.

General Layout Example
The following example program illustrates the general layout of an output page:

 ** Example Program ’OUTPUX01’
 DEFINE DATA LOCAL
 1 EMP-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 BIRTH
 END-DEFINE
 *

Copyright © Software AG 200374

Layout of an Output PageLayout of an Output Page

 WRITE TITLE ’********** Page Title **********’
 WRITE TRAILER ’********** Page Trailer **********’
 AT TOP OF PAGE
 WRITE ’===== Top of Page =====’
 END-TOPPAGE
 AT END OF PAGE
 WRITE ’===== End of Page =====’
 END-ENDPAGE
 READ (10) EMP-VIEW BY NAME
 DISPLAY NAME FIRST-NAME BIRTH (EM=YYYY-MM-DD)
 AT START OF DATA
 WRITE ’>>>>> Start of Data >>>>>’
 END-START
 AT END OF DATA
 WRITE ’<<<<< End of Data <<<<<’
 END-ENDDATA
 END-READ
 END

 ********** Page Title **********
 ===== Top of Page =====
 NAME FIRST-NAME DATE
 OF
 BIRTH
 -------------------- -------------------- ----------

 >>>>> Start of Data >>>>>
 ABELLAN KEPA 1961-04-08
 ACHIESON ROBERT 1963-12-24
 ADAM SIMONE 1952-01-30
 ADKINSON JEFF 1951-06-15
 ADKINSON PHYLLIS 1956-09-17
 ADKINSON HAZEL 1954-03-19
 ADKINSON DAVID 1946-10-12
 ADKINSON CHARLIE 1950-03-02
 ADKINSON MARTHA 1970-01-01
 ADKINSON TIMMIE 1970-03-03
 <<<<< End of Data <<<<<
 ********** Page Trailer **********
 ===== End of Page =====

75Copyright © Software AG 2003

General Layout ExampleLayout of an Output Page

Statements DISPLAY and WRITE
This document describes how to use the statements DISPLAY and WRITE to output data and control the format
in which information is output.

The following topics are covered:

DISPLAY Statement
WRITE Statement
Example of DISPLAY Statement
Example of WRITE Statement
Column Spacing - SF Parameter and nX Notation
Tab Setting - nT Notation
Line Advance - / Notation
Example of Line Advance in DISPLAY Statement
Example of Line Advance in WRITE Statement
Further Examples of DISPLAY and WRITE Statements

DISPLAY Statement
The DISPLAY statement produces output in column format; that is, the values for one field are output in a
column underneath one another. If multiple fields are output, that is, if multiple columns are produced, these
columns are output next to one another horizontally.

The order in which fields are displayed is determined by the sequence in which you specify the field names in
the DISPLAY statement.

The DISPLAY statement in the following program displays for each person first the personnel number, then the
name and then the job title:

 ** Example Program ’DISPLX01’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 BIRTH
 2 JOB-TITLE
 END-DEFINE
 READ (3) VIEWEMP BY BIRTH
 DISPLAY PERSONNEL-ID NAME JOB-TITLE
 END-READ
 END

 Page 1 99-01-22 11:31:01

 PERSONNEL NAME CURRENT
 ID POSITION
 --------- -------------------- -------------------------

 30020013 GARRET TYPIST
 30016112 TAILOR WAREHOUSEMAN
 20017600 PIETSCH SECRETARY

Copyright © Software AG 200376

Statements DISPLAY and WRITEStatements DISPLAY and WRITE

To change the order of the columns that appear in the output report, simply reorder the field names in the
DISPLAY statement. For example, if you prefer to list employee names first, then job titles followed by
personnel numbers, the appropriate DISPLAY statement would be:

 ** Example Program ’DISPLX02’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 BIRTH
 2 JOB-TITLE
 END-DEFINE
 READ (3) VIEWEMP BY BIRTH
 DISPLAY NAME JOB-TITLE PERSONNEL-ID
 END-READ
 END

 Page 1 99-01-22 11:32:06

 NAME CURRENT PERSONNEL
 POSITION ID
 -------------------- ------------------------- ---------

 GARRET TYPIST 30020013
 TAILOR WAREHOUSEMAN 30016112
 PIETSCH SECRETARY 20017600

A header is output above each column. Various ways to influence this header are described in the document
Column Headers.

WRITE Statement
The WRITE statement is used to produce output in free format (that is, not in columns). In contrast to the
DISPLAY statement, the following applies to the WRITE statement:

If necessary, it automatically creates a line advance; that is, a field or text element that does not fit onto the
current output line, is automatically output in the next line.
It does not produce any headers.
The values of a multiple-value field are output next to one another horizontally, and not underneath one
another.

The two example programs shown below illustrate the basic differences between the DISPLAY statement and
the WRITE statement.

You can also use the two statements in combination with one another, as described later in the document Vertical
Displays, Combining DISPLAY and WRITE.

Example of DISPLAY Statement
 ** Example Program ’DISPLX03’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 SALARY (1:3)
 END-DEFINE

77Copyright © Software AG 2003

WRITE StatementStatements DISPLAY and WRITE

 READ (2) VIEWEMP BY NAME STARTING FROM ’JONES’
 DISPLAY NAME FIRST-NAME SALARY (1:3)
 END-READ
 END

 Page 1 97-08-14 11:44:00

 NAME FIRST-NAME ANNUAL
 SALARY
 -------------------- -------------------- ----------

 JONES VIRGINIA 46000
 42300
 39300
 JONES MARSHA 50000
 46000
 42700

Example of WRITE Statement
 ** Example Program ’WRITEX01’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 SALARY (1:3)
 END-DEFINE
 READ (2) VIEWEMP BY NAME STARTING FROM ’JONES’
 WRITE NAME FIRST-NAME SALARY (1:3)
 END-READ
 END

 Page 1 97-08-14 11:45:00

 JONES VIRGINIA 46000 42300 39300
 JONES MARSHA 50000 46000 42700

Column Spacing - SF Parameter and nX Notation
By default, the columns output with a DISPLAY statement are separated from one another by one space.

With the session parameter SF, you can specify the default number of spaces to be inserted between columns
output with a DISPLAY statement. You can set the number of spaces to any value from 1 to 30.

The parameter can be specified with a FORMAT statement to apply to the whole report, or with a DISPLAY
statement at statement level, but not at field level.

With the nX notation in the DISPLAY statement, you can specify the number of spaces (n) to be inserted
between two columns. An nX notation overrides the specification made with the SF parameter.

Copyright © Software AG 200378

Statements DISPLAY and WRITEExample of WRITE Statement

 ** Example Program ’DISPLX04’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 BIRTH
 2 JOB-TITLE
 END-DEFINE
 FORMAT SF=3
 READ (3) VIEWEMP BY BIRTH
 DISPLAY PERSONNEL-ID NAME 5X JOB-TITLE
 END-READ
 END

The above example program produces the following output, where the first two columns are separated by 3
spaces due to the SF parameter in the FORMAT statement, while the second and third columns are separated by
5 spaces due to the notation "5X" in the DISPLAY statement:

 Page 1 99-01-22 11:33:40

 PERSONNEL NAME CURRENT
 ID POSITION
 --------- -------------------- -------------------------

 30020013 GARRET TYPIST
 30016112 TAILOR WAREHOUSEMAN
 20017600 PIETSCH SECRETARY

The nX notation is also available with the WRITE statement to insert spaces between individual output elements:

 WRITE PERSONNEL-ID 5X NAME 3X JOB-TITLE

With the above statement, 5 spaces will be inserted between the fields PERSONNEL-ID and NAME, and 3
spaces between NAME and JOB-TITLE.

Tab Setting - nT Notation
With the nT notation, which is available with the DISPLAY and the WRITE statement, you can specify the
position where an output element is to be output.

 ** Example Program ’DISPLX05’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 END-DEFINE
 READ (3) VIEWEMP BY NAME STARTING FROM ’JONES’
 DISPLAY 5T NAME 30T FIRST-NAME
 END-READ
 END

The above program produces the following output, where the field NAME is output starting in the 5th position
(counted from the left margin of the page), and the field FIRST-NAME starting in the 30th position:

79Copyright © Software AG 2003

Tab Setting - nT NotationStatements DISPLAY and WRITE

 Page 1 97-08-21 11:46:01

 NAME FIRST-NAME
 -------------------- --------------------
 JONES VIRGINIA
 JONES MARSHA
 JONES ROBERT

Line Advance - Slash Notation
With a slash "/" in a DISPLAY or WRITE statement, you cause a line advance.

In a DISPLAY statement, a slash causes a line advance between fields and within text.
In a WRITE statement, a slash causes a line advance only when placed between fields; within text, it is
treated like an ordinary text character.

When placed between fields, the slash must have a blank on either side.

For multiple line advances, you specify multiple slashes.

Example of Line Advance in DISPLAY Statement
 ** Example Program ’DISPLX06’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 DEPARTMENT
 END-DEFINE
 READ (3) VIEWEMP BY NAME STARTING FROM ’JONES’
 DISPLAY NAME / FIRST-NAME ’DEPART-/MENT’ DEPARTMENT
 END-READ
 END

The above DISPLAY statement produces a line advance after each value of the field NAME and within the text
"DEPART-MENT":

Page 1 97-08-14 11:45:12

 NAME DEPART-
 FIRST-NAME MENT
 -------------------- -------

 JONES SALE
 VIRGINIA
 JONES MGMT
 MARSHA
 JONES TECH
 ROBERT

Copyright © Software AG 200380

Statements DISPLAY and WRITELine Advance - Slash Notation

Example of Line Advance in WRITE Statement
 ** Example Program ’WRITEX02’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 DEPARTMENT
 END-DEFINE
 READ (3) VIEWEMP BY NAME STARTING FROM ’JONES’
 WRITE NAME / FIRST-NAME ’DEPART-/MENT’ DEPARTMENT //
 END-READ
 END

The above WRITE statement produces a line advance after each value of the field NAME, and a double line
advance after each value of the field DEPARTMENT, but none within the text "DEPART-/MENT":

 Page 1 97-08-14 11:45:12

 JONES
 VIRGINIA DEPART-/MENT SALE

 JONES
 MARSHA DEPART-/MENT MGMT

 JONES
 ROBERT DEPART-/MENT TECH

Further Examples of DISPLAY and WRITE Statements
See the following example programs in library SYSEXPG:

DISPLX13
WRITEX08
DISPLX14
WRITEX09
DISPLX21

81Copyright © Software AG 2003

Example of Line Advance in WRITE StatementStatements DISPLAY and WRITE

Index Notation for Multiple-Value Fields
and Periodic Groups
This document describes how you can use the index notation (n:n) to specify how many values of a
multiple-value field or how many occurrences of a periodic group are to be output.

The following topics are covered:

Use of Index Notation
Example of Index Notation in DISPLAY Statement
Example of Index Notation in WRITE Statement

Use of Index Notation
With the index notation (n:n) you can specify how many values of a multiple-value field or how many
occurrences of a periodic group are to be output.

For example, the field INCOME in the DDM EMPLOYEES is a periodic group which keeps a record of the
annual incomes of an employee for each year he/she has been with the company.

These annual incomes are maintained in chronological order. The income of the most recent year is in
occurrence "1".

If you wanted to have the annual incomes of an employee for the last three years displayed - that is, occurrences
"1" to "3" - you would specify the notation "(1:3)" after the field name in a DISPLAY or WRITE statement (as
shown in the following example program).

Example of Index Notation in DISPLAY Statement
 ** Example Program ’DISPLX07’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 BIRTH
 2 INCOME (1:3)
 3 CURR-CODE
 3 SALARY
 3 BONUS (1:1)
 END-DEFINE
 READ (3) VIEWEMP BY BIRTH
 DISPLAY PERSONNEL-ID NAME INCOME (1:3)
 SKIP 1
 END-READ
 END

Note that a DISPLAY statement outputs multiple values of a multiple-value field underneath one another:

Copyright © Software AG 200382

Index Notation for Multiple-Value Fields and Periodic GroupsIndex Notation for Multiple-Value Fields and Periodic Groups

 Page 1 99-01-22 11:36:58

 PERSONNEL NAME INCOME
 ID
 CURRENCY ANNUAL BONUS
 CODE SALARY
 --------- -------------------- -------- ---------- ----------

 30020013 GARRET UKL 4200 0
 UKL 4150 0
 0 0

 30016112 TAILOR UKL 7450 0
 UKL 7350 0
 UKL 6700 0

 20017600 PIETSCH USD 22000 0
 USD 20200 0
 USD 18700 0

As a WRITE statement displays multiple values horizontally instead of vertically, this may cause a line overflow
and a - possibly undesired - line advance.

If you use only a single field within a periodic group (for example, SALARY) instead of the entire periodic
group, and if you also insert a slash "/" to cause a line advance (as shown in the following example between
NAME and JOB-TITLE), the report format becomes manageable.

Example of Index Notation in WRITE Statement
 ** Example Program ’WRITEX03’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 BIRTH
 2 JOB-TITLE
 2 SALARY (1:3)
 END-DEFINE
 READ (3) VIEWEMP BY BIRTH
 WRITE PERSONNEL-ID NAME / JOB-TITLE SALARY (1:3)
 SKIP 1
 END-READ
 END

 Page 1 99-01-22 11:37:18

 30020013 GARRET
 TYPIST 4200 4150 0

 30016112 TAILOR
 WAREHOUSEMAN 7450 7350 6700

 20017600 PIETSCH
 SECRETARY 22000 20200 18700

83Copyright © Software AG 2003

Example of Index Notation in WRITE StatementIndex Notation for Multiple-Value Fields and Periodic Groups

Page Titles and Page Breaks
This document describes various ways of controlling page breaks in a report and the output of page titles at the
top of each report page.

The following topics are covered:

Default Page Title
Suppress Page Title - NOTITLE Option
Define Your Own Page Title - WRITE TITLE Statement
Logical Page and Physical Page
Page Size - PS Parameter
Page Advance - EJ Parameter
Page Advance - EJECT and NEWPAGE Statements
Page Trailer - WRITE TRAILER Statement
AT TOP OF PAGE Statement
AT END OF PAGE Statement
Further Examples

Default Page Title
For each page output via a DISPLAY or WRITE statement, Natural automatically generates a single default title
line. This title line contains the page number, the date and the time of day.

 WRITE ’HELLO’
 END

The above program produces the following output with default page title:

 Page 1 97-08-14 18:27:35

 HELLO

Suppress Page Title - NOTITLE Option
If you wish your report to be output without page titles, you add the keyword NOTITLE to the DISPLAY or
WRITE statement.

 WRITE NOTITLE ’HELLO’
 END

The above program produces the following output without page title:

 HELLO

Copyright © Software AG 200384

Page Titles and Page BreaksPage Titles and Page Breaks

Define Your Own Page Title - WRITE TITLE Statement
If you wish a page title of your own to be output instead of the Natural default page title, you use the statement
WRITE TITLE.

The following topics are covered below:

Specifying Text for Your Title
Specifying Empty Lines after the Title
Title Justification and/or Underlining

Specifying Text for Your Title

With the statement WRITE TITLE, you specify the text for your title (in apostrophes).

 WRITE TITLE ’THIS IS MY PAGE TITLE’
 WRITE ’HELLO’
 END

 THIS IS MY PAGE TITLE
 HELLO

Specifying Empty Lines after the Title

With the SKIP option of the WRITE TITLE statement, you can specify the number of empty lines to be output
immediately below the title line. After the keyword SKIP, you specify the number of empty lines to be inserted.

 WRITE TITLE ’THIS IS MY PAGE TITLE’ SKIP 2
 WRITE ’HELLO’
 END

 THIS IS MY PAGE TITLE

 HELLO

SKIP is not only available as part of the WRITE TITLE statement, but also as a stand-alone statement.

Title Justification and/or Underlining

By default, the page title is centered on the page and not underlined.

The WRITE TITLE statement provides the following options which can be used independent of each other:

85Copyright © Software AG 2003

Define Your Own Page Title - WRITE TITLE StatementPage Titles and Page Breaks

Option Effect

LEFT
JUSTIFIED

Causes the title to be displayed left-justified.

UNDERLINED

Causes the title to be displayed underlined. The underlining runs the width of the line size
(see also Natural profile and session parameter LS).

By default, titles are underlined with a hyphen (-). However, with the UC session
parameter you can specify another character to be used as underlining character (see
Underlining Character for Titles and Headers).

The following example shows the effect of the LEFT JUSTIFIED and UNDERLINED options:

 WRITE TITLE LEFT JUSTIFIED UNDERLINED ’THIS IS MY PAGE TITLE’ SKIP 2
 WRITE ’HELLO’
 END

 THIS IS MY PAGE TITLE
 --

 HELLO

The WRITE TITLE statement is executed whenever a new page is initiated for the report.

Logical Page and Physical Page
A logical page is the output produced by a Natural program.

A physical page is your terminal screen on which the output is displayed; or it may be the piece of paper on
which the output is printed.

The size of the logical page is determined by the number of lines output by the Natural program.

If more lines are output than fit onto one screen, the logical page will exceed the physical screen, and the
remaining lines will be displayed on the next screen.

Copyright © Software AG 200386

Page Titles and Page BreaksLogical Page and Physical Page

If information you wish to appear at the bottom of the screen (for example, output created by a WRITE
TRAILER or AT END OF PAGE statement) is output on the next screen instead, reduce the logical page size
accordingly (with the session parameter PS, which is discussed below).

Page Size - PS Parameter
With the parameter PS, you determine the maximum number of lines per (logical) page for a report.

When the number of lines specified with the PS parameter is reached, a page advance occurs (unless page
advance is controlled with a NEWPAGE or EJECT statement; see Page Advance Controlled by EJ Parameter
below).

87Copyright © Software AG 2003

Page Size - PS ParameterPage Titles and Page Breaks

The PS parameter can be set either at session level with the system command GLOBALS, or within a program
with the following statements:

at report level:
FORMAT PS=nn

at statement level:
DISPLAY (PS= nn)
WRITE (PS= nn)
WRITE TITLE (PS= nn)
WRITE TRAILER (PS= nn)
INPUT (PS= nn)

Page Advance
A page advance can be triggered by one of the following methods:

Page Advance Controlled by EJ Parameter
Page Advance Controlled by EJECT or NEWPAGE Statements
Eject/New Page when less than n Line Left

These methods are discussed below.

Page Advance Controlled by EJ Parameter

With the session parameter EJ, you determine whether page ejects are to be performed or not. By default,
EJ=ON applies, which means that page ejects will be performed as specified.

If you specify EJ=OFF, page break information will be ignored. This may be useful to save paper during test
runs where page ejects are not needed.

The EJ parameter can be set at session level with the system command GLOBALS; for example:

GLOBALS EJ=OFF

The EJ parameter setting is overriden by the EJECT statement.

Page Advance Controlled by EJECT or NEWPAGE Statements

Page Advance without Title/Header on Next Page

The EJECT statement causes a page advance without a title or header line being generated on the next page. A
new physical page is started without any top-of-page or end-of-page processing being performed (for example,
no WRITE TRAILER or AT END OF PAGE, WRITE TITLE, AT TOP OF PAGE or *PAGE-NUMBER
processing).

The EJECT statement overrides the EJ parameter setting.

Page Advance with End/Top-of-Page Processing

The NEWPAGE statement causes a page advance with associated end-of-page and top-of-page processing. A
trailer line will be displayed, if specified. A title line, either default or user-specified, will be displayed on the
new page (unless the NOTITLE option has been specified in a DISPLAY or WRITE statement).

If the NEWPAGE statement is not used, page advance is automatically controlled by the setting of the PS
parameter; see Page Size - PS Parameter above).

Copyright © Software AG 200388

Page Titles and Page BreaksPage Advance

Eject/New Page when less than n Line Left

Both the NEWPAGE statement and the EJECT statement provide a WHEN LESS THAN nLINES LEFT option.
With this option, you specify a number of lines n. The NEWPAGE/EJECT statement will then be executed if - at
the time the statement is processed - less than n lines are available on the current page.

Example:

 FORMAT PS=55
 ...
 NEWPAGE WHEN LESS THAN 7 LINES LEFT
 ...

In this example, the page size is set to 55 lines.

If only 6 or less lines are left on the current page at the time when the NEWPAGE statement is processed, the
NEWPAGE statement is executed and a page advance occurs.
If 7 or more lines are left, the NEWPAGE statement is not executed and no page advance occurs; the page
advance then occurs depending on the PS parameter, that is, after 55 lines.

New Page with Title
The NEWPAGE statement also provides a WITH TITLE option. If this option is not used, a default title will
appear at the top of the new page or a WRITE TITLE statement or NOTITLE clause will be executed.

The WITH TITLE option of the NEWPAGE statement allows you to override these with a title of your own
choice. The syntax of the WITH TITLE option is the same as for the WRITE TITLE statement.

Example:

 NEWPAGE WITH TITLE LEFT JUSTIFIED ’PEOPLE LIVING IN BOSTON:’

The following program illustrates the use of the PS parameter and the NEWPAGE statement. Moreover, the
system variable *PAGE-NUMBER is used to display the current page number.

 ** Example Program ’NEWPAX01’
 DEFINE DATA LOCAL
 1 VIEWEMP OF EMPLOYEES
 2 NAME
 2 CITY
 2 DEPT
 END-DEFINE
 FORMAT PS=20
 READ (5) VIEWEMP BY CITY STARTING FROM ’M’
 DISPLAY NAME ’DEPT’ DEPT ’LOCATION’ CITY
 AT BREAK OF CITY
 NEWPAGE WITH TITLE LEFT JUSTIFIED
 ’EMPLOYEES BY CITY - PAGE:’ *PAGE-NUMBER
 END-BREAK
 END-READ
 END

Note the position of the page breaks and the title line printed on the new page:

89Copyright © Software AG 2003

New Page with TitlePage Titles and Page Breaks

 Page 1 97-08-19 18:27:35

 NAME DEPT LOCATION
 -------------------- ------ --------------------

 FICKEN TECH10 MADISON
 KELLOGG TECH10 MADISON
 ALEXANDER SALE20 MADISON

 EMPLOYEES BY CITY - PAGE: 2
 NAME DEPT LOCATION
 -------------------- ------ --------------------

 DE JUAN SALE03 MADRID
 DE LA MADRID PROD01 MADRID

Page Trailer - WRITE TRAILER Statement
Specifying a Page Trailer
Considering Logical Page Size
Page Trailer Justification and/or Underlining

Specifying a Page Trailer

The WRITE TRAILER statement is used to output text (in apostrophes) at the bottom of a page.

 WRITE TRAILER ’THIS IS THE END OF THE PAGE’

The statement is executed when an end-of-page condition is detected, or as a result of a SKIP or NEWPAGE
statement.

Considering Logical Page Size

As the end-of-page condition is checked only after an entire DISPLAY or WRITE statement has been processed,
it may occur that the logical page size (that is, the number of lines output by a DISPLAY or WRITE statement)
causes the physical size of the output page to be exceeded before the WRITE TRAILER statement is executed.

To ensure that a page trailer actually appears at the bottom of a physical page, you should set the logical page
size (with the PS session parameter) to a value less than the physical page size.

Page Trailer Justification and/or Underlining

By default, the page trailer is displayed centered on the page and not underlined.

The WRITE TRAILER statement provides the following options which can be used independent of each other:

Copyright © Software AG 200390

Page Titles and Page BreaksPage Trailer - WRITE TRAILER Statement

Option Effect

LEFT
JUSTIFIED

Causes the page trailer to be displayed left-justified.

UNDERLINED

Causes the page trailer to be displayed underlined. The underlining runs the width of the
line size (see also Natural profile and session parameter LS).

By default, titles are underlined with a hyphen (-). However, with the UC session
parameter you can specify another character to be used as underlining character (see
Underlining Character for Titles and Headers).

The following example shows the use of the LEFT JUSTIFIED and UNDERLINED options of the WRITE
TRAILER statement:

 WRITE TRAILER LEFT JUSTIFIED UNDERLINED ’THIS IS THE END OF THE PAGE’

AT TOP OF PAGE Statement
The AT TOP OF PAGE statement is used to specify any processing that is to be performed whenever a new page
of the report is started.

If the AT TOP OF PAGE processing produces any output, this will be output below the page title (with a
skipped line in between).

By default, this output is displayed left-justified on the page.

AT END OF PAGE Statement
The AT END OF PAGE statement is used to specify any processing that is to be performed whenever an
end-of-page condition occurs.

If the AT END OF PAGE processing produces any output, this will be output after any page trailer (as specified
with the WRITE TRAILER statement).

By default, this output is displayed left-justified on the page.

The same considerations described above for page trailers regarding physical and logical page sizes and the
number of lines output by a DISPLAY or WRITE statement also apply to AT END OF PAGE output.

Further Examples

Examples of WRITE TITLE, WRITE TRAILER, AT TOP OF PAGE, AT
END OF PAGE and SKIP Statements

See the following example programs in library SYSEXPG:

WTITLX01
DISPLX21
ATENPX01
ATTOPX01
SKIPX01
SKIPX02

91Copyright © Software AG 2003

AT TOP OF PAGE StatementPage Titles and Page Breaks

Example of NOTITLE Option

See the following example program in library SYSEXPG:

DISPLX20

Example of NEWPAGE and EJECT Statements

See the following example program in library SYSEXPG:

NEWPAX02

Copyright © Software AG 200392

Page Titles and Page BreaksExample of NOTITLE Option

Column Headers
This document describes various ways of controlling the display of column headers produced by a DISPLAY
statement.

Default Column Headers
Suppress Default Column Headers - NOHDR Option
Define Your Own Column Headers
Combining NOTITLE and NOHDR
Centering of Columm Headers - HC Parameter
Width of Columm Headers - HW Parameter
Filler Characters for Headers - Parameters FC and GC
Underlining Character for Titles and Headers - UC Parameter
Suppressing Columm Headers - Slash Notation
Further Examples of Column Headers

Default Column Headers
By default, each database field output with a DISPLAY statement is displayed with a default column header
(which is defined for the field in the DDM).

 ** Example Program ’DISPLX01’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 BIRTH
 2 JOB-TITLE
 END-DEFINE
 READ (3) VIEWEMP BY BIRTH
 DISPLAY PERSONNEL-ID NAME JOB-TITLE
 END-READ
 END

The above example program uses default headers and produces the following output:

 Page 1 99-01-22 11:31:01

 PERSONNEL NAME CURRENT
 ID POSITION
 --------- -------------------- -------------------------

 30020013 GARRET TYPIST
 30016112 TAILOR WAREHOUSEMAN
 20017600 PIETSCH SECRETARY

Suppress Default Column Headers - NOHDR Option
If you wish your report to be output without column headers, add the keyword NOHDR to the DISPLAY
statement.

93Copyright © Software AG 2003

Column HeadersColumn Headers

 DISPLAY NOHDR PERSONNEL-ID NAME JOB-TITLE

Define Your Own Column Headers
If you wish column headers of your own to be output instead of the default headers, you specify ’text’ (in
apostrophes) immediately before a field, text being the header to be used for the field.

 ** Example Program ’DISPLX08’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 BIRTH
 2 JOB-TITLE
 END-DEFINE
 READ (3) VIEWEMP BY BIRTH
 DISPLAY PERSONNEL-ID
 ’EMPLOYEE’ NAME
 ’POSITION’ JOB-TITLE
 END-READ
 END

The above program contains the header "EMPLOYEE" for the field NAME, and the header "POSITION" for the
field JOB-TITLE; for the field PERSONNEL-ID, the default header is used. The program produces the
following output:

 Page 1 99-01-22 11:39:53

 PERSONNEL EMPLOYEE POSITION
 ID
 --------- -------------------- -------------------------

 30020013 GARRET TYPIST
 30016112 TAILOR WAREHOUSEMAN
 20017600 PIETSCH SECRETARY

Combining NOTITLE and NOHDR
To create a report that has neither page title nor column headers, you specify the NOTITLE and NOHDR options
together in the following order:

 DISPLAY NOTITLE NOHDR PERSONNEL-ID NAME JOB-TITLE

Centering of Column Headers - HC Parameter
By default, column headers are centered above the columns. With the HC parameter, you can influence the
placement of column headers.

If you specify

Copyright © Software AG 200394

Column HeadersDefine Your Own Column Headers

HC=L headers will be left-justified.

HC=R headers will be right-justified.

HC=C headers will be centered.

The HC parameter can be used in a FORMAT statement to apply to the whole report, or it can be used in a
DISPLAY statement at both statement level and field level.

 DISPLAY (HC=L) PERSONNEL-ID NAME JOB-TITLE

Width of Column Headers - HW Parameter
With the HW parameter, you determine the width of a column output with a DISPLAY statement.

If you specify

HW=ON
the width of a DISPLAY column is determined by either the length of the header text or the
length of the field, whichever is longer. This also applies by default.

HW=OFF
the width of a DISPLAY column is determined only by the length of the field. However,
HW=OFF only applies to DISPLAY statements which do not create headers; that is, either a first
DISPLAY statement with NOHDR option or a subsequent DISPLAY statement.

The HW parameter can be used in a FORMAT statement to apply to the entire report, or it can be used in a
DISPLAY statement at both statement level and field level.

Filler Characters for Headers - Parameters FC and GC
With the FC parameter, you specify the filler character which will appear on either side of a header produced by
a DISPLAY statement across the full column width if the column width is determined by the field length and not
by the header (see HW parameter above); otherwise FC will be ignored.

When a group of fields or a periodic group is output via a DISPLAY statement, a group header is displayed
across all field columns that belong to that group above the headers for the individual fields within the group.
With the GC parameter, you can specify the filler character which will appear on either side of such a group
header.

While the FC parameter applies to the headers of individual fields, the GC parameter applies to the headers for
groups of fields.

The parameters FC and GC can be specified in a FORMAT statement to apply to the whole report, or they can be
specified in a DISPLAY statement at both statement level and field level.

 ** Example Program ’FORMAX01’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 INCOME (1:1)
 3 CURR-CODE
 3 SALARY
 3 BONUS (1:1)
 END-DEFINE
 FORMAT FC=* GC=$

95Copyright © Software AG 2003

Width of Column Headers - HW ParameterColumn Headers

 READ (3) VIEWEMP BY NAME
 DISPLAY NAME (FC==) INCOME (1)
 END-READ
 END

The above program produces the following output:

 Page 1 97-08-19 17:37:27

 ========NAME======== $$$$$$$$$$$$INCOME$$$$$$$$$$$$

 CURRENCY **ANNUAL** **BONUS***
 CODE SALARY
 -------------------- -------- ---------- ----------

 ABELLAN PTA 1450000 0
 ACHIESON UKL 10500 0
 ADAM FRA 159980 23000

Underlining Character for Titles and Headers - UC
Parameter
By default, titles and headers are underlined with a hyphen (-).

With the UC parameter, you can specify another character to be used as underlining character.

The UC parameter can be specified in a FORMAT statement to apply to the whole report, or it can be specified
in a DISPLAY statement at both statement level and field level.

 ** Example Program ’FORMAX02’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
 2 BIRTH
 2 JOB-TITLE
 END-DEFINE
 FORMAT UC==
 WRITE TITLE LEFT JUSTIFIED UNDERLINED ’EMPLOYEES REPORT’ SKIP 1
 READ (3) VIEWEMP BY BIRTH
 DISPLAY PERSONNEL-ID (UC=*) NAME JOB-TITLE
 END-READ
 END

In the above program, the UC parameter is specified at program level and at field level: the underlining character
specified with the FORMAT statement (=) applies for the whole report - except for the field PERSONNEL-ID,
for which a different underlining character (*) is specified. The program produces the following output:

Copyright © Software AG 200396

Column HeadersUnderlining Character for Titles and Headers - UC Parameter

 EMPLOYEES REPORT
 ===

 PERSONNEL NAME CURRENT
 ID POSITION
 ********* ==================== =========================

 30020013 GARRET TYPIST
 30016112 TAILOR WAREHOUSEMAN
 20017600 PIETSCH SECRETARY

Suppressing Column Headers - Slash Notation
With the notation apostrophe-slash-apostrophe (’/’), you can suppress default column headers for individual
fields displayed with a DISPLAY statement. While the NOHDR option suppresses the headers of all columns,
the notation ’/’ can be used to suppress the header for an individual column.

The apostrophe-slash-apostrophe (’/’) notation is specified in the DISPLAY statement immediately before the
name of the field for which the column header is to be suppressed.

Compare the following two examples:

Example 1:

 DISPLAY NAME PERSONNEL-ID JOB-TITLE

In this case, the default column headers of all three fields will be displayed:

 Page 1 97-04-19 17:37:27

 NAME PERSONNEL CURRENT
 ID POSITION
 -------------------- --------- -------------------------

 ABELLAN 60008339 MAQUINISTA
 ACHIESON 30000231 DATA BASE ADMINISTRATOR
 ADAM 50005800 CHEF DE SERVICE
 ADKINSON 20008800 PROGRAMMER
 ADKINSON 20009800 DBA
 ADKINSON 20011000 SALES PERSON

Example 2:

 DISPLAY ’/’ NAME PERSONNEL-ID JOB-TITLE

In this case, the notation ’/’ causes the column header for the field NAME to be suppressed:

97Copyright © Software AG 2003

Suppressing Column Headers - Slash NotationColumn Headers

 Page 1 97-04-19 17:38:45

 PERSONNEL CURRENT
 ID POSITION
 --------- -------------------------

 ABELLAN 60008339 MAQUINISTA
 ACHIESON 30000231 DATA BASE ADMINISTRATOR
 ADAM 50005800 CHEF DE SERVICE
 ADKINSON 20008800 PROGRAMMER
 ADKINSON 20009800 DBA
 ADKINSON 20011000 SALES PERSON

Further Examples of Column Headers
See the following example programs in library SYSEXPG:

DISPLX15
DISPLX16

Copyright © Software AG 200398

Column HeadersFurther Examples of Column Headers

Parameters to Influence the Output of
Fields
This document discusses the use of those Natural profile and/or session parameters which you can use to control
the output format of fields.

The following topics are covered:

Overview of Field-Output-Relevant Parameters
Leading Characters - LC Parameter
Insertion Characters - IC Parameter
Trailing Characters - TC Parameter
Output Length - AL and NL Parameters
Sign Position - SG Parameter
Identical Suppress - IS Parameter
Zero Printing - ZP Parameter
Empty Line Suppression - ES Parameter
Further Examples of Field-Output-Relevant Parameters

Overview of Field-Output-Relevant Parameters
Natural provides several profile and/or session parameters you can use to control the format in which fields are
output:

Parameter Function

LC, IC and
TC

With these session parameters, you can specify characters that are to be displayed before or
after a field or before a field value.

AL and NL With these session parameters, you can increase or reduce the output length of fields.

SG With this session parameter, you can determine whether negative values are to be displayed
with or without a minus sign.

IS With this session parameter, you can suppress the display of subsequent identical field values.

ZP With this profile and session parameter, you can determine whether field values of "0" are to be
displayed or not.

ES With this session parameter, you can suppress the display of empty lines generated by a
DISPLAY or WRITE statement.

These parameters are discussed below.

Leading Characters - LC Parameter
With the session parameter LC, you can specify leading characters that are to be displayed immediately before a
field that is output with a DISPLAY statement. The width of the output column is enlarged accordingly. You can
specify 1 to 10 characters.

99Copyright © Software AG 2003

Parameters to Influence the Output of FieldsParameters to Influence the Output of Fields

By default, values are displayed left-justified in alphanumeric fields and right-justified in numeric fields. (These
defaults can be changed with the AD parameter; see the Parameter Reference documentation). When a leading
character is specified for an alphanumeric field, the character is therefore displayed immediately before the field
value; for a numeric field, a number of spaces may occur between the leading character and the field value.

The LC parameter can be used with the following statements:

FORMAT
DISPLAY

It can be set at statement level and at field level.

Insertion Characters - IC Parameter
With the session parameter IC, you specify the characters to be inserted in the column immediately preceding the
value of a field that is output with a DISPLAY statement. You can specify 1 to 10 characters.

For a numeric field, the insertion characters will be placed immediately before the first significant digit that is
output, with no intervening spaces between the specified character and the field value. For alphanumeric fields,
the effect of the IC parameter is the same as that of the LC parameter.

The parameters LC and IC cannot both be applied to one field.

The IC parameter can be used with the following statements:

FORMAT
DISPLAY

It can be set at statement level and at field level.

Trailing Characters - TC Parameter
With the session parameter TC, you can specify trailing characters that are to be displayed immediately to the
right of a field that is output with a DISPLAY statement. The width of the output column is enlarged
accordingly. You can specify 1 to 10 characters.

The TC parameter can be used with the following statements:

FORMAT
DISPLAY

It can be set at statement level and at field level.

Output Length - AL and NL Parameters
With the session parameter AL, you can specify the output length for an alphanumeric field; with the NL
parameter, you can specify the output length for a numeric field. This determines the length of a field as it will
be output, which may be shorter or longer than the actual length of the field (as defined in the DDM for a
database field, or in the DEFINE DATA statement for a user-defined variable).

Both parameters can be used with the following statements:

FORMAT
DISPLAY
WRITE

Copyright © Software AG 2003100

Parameters to Influence the Output of FieldsInsertion Characters - IC Parameter

INPUT

They can be set at statement level and at field level.

Note:
If an edit mask is specified, it overrides an NL or AL specification. Edit masks are described in Edit Masks - EM
Parameter.

Sign Position - SG Parameter
With the session parameter SG, you can determine whether or not a sign position is to be allocated for numeric
fields.

By default, SG=ON applies, which means that a sign position is allocated for numeric fields.
If you specify SG=OFF, negative values in numeric fields will be output without a minus sign (-).

The SG parameter can be used with the following statements:

FORMAT
DISPLAY
WRITE
INPUT

It can be set at both statement level and field level.

Note:
If an edit mask is specified, it overrides an SG specification. Edit masks are described in Edit Masks - EM
Parameter.

Example Program without Parameters
 ** Example Program ’FORMAX03’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 SALARY (1:1)
 2 BONUS (1:1,1:1)
 END-DEFINE
 READ (5) VIEWEMP BY NAME STARTING FROM ’JONES’
 DISPLAY NAME FIRST-NAME
 SALARY (1:1) BONUS (1:1,1:1)
 END-READ
 END

The above program contains no parameter settings and produces the following output:

 Page 1 97-08-15 17:25:19

 NAME FIRST-NAME ANNUAL BONUS
 SALARY
 -------------------- -------------------- ---------- ----------

 JONES VIRGINIA 46000 9000
 JONES MARSHA 50000 0
 JONES ROBERT 31000 0
 JONES LILLY 24000 0
 JONES EDWARD 37600 0

101Copyright © Software AG 2003

Sign Position - SG ParameterParameters to Influence the Output of Fields

Example Program with Parameters AL, NL, LC, IC and TC

In this example, the session parameters AL, NL, LC, IC and TC are used.

 ** Example Program ’FORMAX04’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 SALARY (1:1)
 2 BONUS (1:1,1:1)
 END-DEFINE
 FORMAT AL=10 NL=6
 READ (5) VIEWEMP BY NAME STARTING FROM ’JONES’
 DISPLAY NAME (LC=*) FIRST-NAME (TC=*)
 SALARY (1:1)(IC=$) BONUS (1:1,1:1)(LC=>)
 END-READ
 END

The above program produces the following output. Compare the layout of this output with that of the previous
program to see the effect of the individual parameters:

 Page 1 97-08-19 17:26:12

 NAME FIRST-NAME ANNUAL BONUS
 SALARY
 ----------- ----------- -------- --------

 *JONES VIRGINIA * $46000 > 9000
 *JONES MARSHA * $50000 > 0
 *JONES ROBERT * $31000 > 0
 *JONES LILLY * $24000 > 0
 *JONES EDWARD * $37600 > 0

As you can see in the above example, any output length you specify with the AL or NL parameter does not
include any characters specified with the LC, IC and TC parameters: the width of the NAME column, for
example, is 11 characters - 10 for the field value (AL=10) plus 1 leading character.

The width of the SALARY and BONUS columns is 8 characters - 6 for the field value (NL=6), plus 1
leading/inserted character, plus 1 sign position (because SG=ON applies).

Identical Suppress - IS Parameter
With the session parameter IS, you can suppress the display of identical information in successive lines created
by a WRITE or DISPLAY statement.

By default, IS=OFF applies, which means that identical field values will be displayed.
If IS=ON is specified, a value which is identical to the previous value of that field will not be displayed.

The IS parameter can be specified

with a FORMAT statement to apply to the whole report, or
in a DISPLAY or WRITE statement at both statement level and field level.

The effect of the parameter IS=ON can be suspended for one record by using the statement SUSPEND
IDENTICAL SUPPRESS; see the Natural Statements documentation for details.

Copyright © Software AG 2003102

Parameters to Influence the Output of FieldsIdentical Suppress - IS Parameter

Compare the output of the following two example programs to see the effect of the IS parameter. In the second
one, the display of identical values in the NAME field is suppressed.

Example Program without IS Parameter
 ** Example Program ’FORMAX05’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 END-DEFINE
 READ (3) VIEWEMP BY NAME STARTING FROM ’JONES’
 DISPLAY NAME FIRST-NAME
 END-READ
 END

 Page 1 97-08-18 17:25:19

 NAME FIRST-NAME
 -------------------- --------------------

 JONES VIRGINIA
 JONES MARSHA
 JONES ROBERT

Example Program with IS Parameter
 ** Example Program ’FORMAX06’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 END-DEFINE
 FORMAT IS=ON
 READ (3) VIEWEMP BY NAME STARTING FROM ’JONES’
 DISPLAY NAME FIRST-NAME
 END-READ
 END

 Page 1 97-08-18 17:26:02

 NAME FIRST-NAME
 -------------------- --------------------

 JONES VIRGINIA
 MARSHA
 ROBERT

Zero Printing - ZP Parameter
With the profile and session parameter ZP, you determine how a field value of zero is to be displayed.

By default, ZP=ON applies, which means that one "0" (for numeric fields) or all zeros (for time fields) will
be displayed for each field value that is zero.
If you specify ZP=OFF, the display of each field value which is zero will be suppressed.

103Copyright © Software AG 2003

Zero Printing - ZP ParameterParameters to Influence the Output of Fields

The ZP parameter can be specified

with a FORMAT statement to apply to the whole report, or
in a DISPLAY or WRITE statement at both statement level and field level.

Compare the output of the following two example programs to see the effect of the parameters ZP and ES.

Empty Line Suppression - ES Parameter
With the session parameter ES, you can suppress the output of empty lines created by a DISPLAY or WRITE
statement.

By default, ES=OFF applies, which means that lines containing all blank values will be displayed.
If ES=ON is specified, a line resulting from a DISPLAY or WRITE statement which contains all blank
values will not be displayed. This is particularly useful when displaying multiple-value fields or fields
which are part of a periodic group if a large number of empty lines are likely to be produced.

The ES parameter can be specified

with a FORMAT statement to apply to the whole report, or
in a DISPLAY or WRITE statement at statement level.

Note:
To achieve empty suppression for numeric values, in addition to ES=ON the parameter ZP=OFF must also be set
for the fields concerned in order to have null values turned into blanks and thus not output either.

Compare the output of the following two example programs to see the effect of the parameters ZP and ES.

Example Program without Parameters ZP and ES
 ** Example Program ’FORMAX07’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 BONUS (1:2,1:1)
 END-DEFINE
 READ (4) VIEWEMP BY NAME STARTING FROM ’JONES’
 DISPLAY NAME FIRST-NAME BONUS (1:2,1:1)
 END-READ
 END

 Page 1 97-08-18 17:26:19

 NAME FIRST-NAME BONUS
 -------------------- -------------------- ----------

 JONES VIRGINIA 9000
 6750
 JONES MARSHA 0
 0
 JONES ROBERT 0
 0
 JONES LILLY 0
 0

Copyright © Software AG 2003104

Parameters to Influence the Output of FieldsEmpty Line Suppression - ES Parameter

Example Program with Parameters ZP and ES
 ** Example Program ’FORMAX08’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 BONUS (1:2,1:1)
 END-DEFINE
 FORMAT ES=ON
 READ (4) VIEWEMP BY NAME STARTING FROM ’JONES’
 DISPLAY NAME FIRST-NAME BONUS (1:2,1:1)(ZP=OFF)
 END-READ
 END

 Page 1 97-08-18 17:27:12

 NAME FIRST-NAME BONUS
 -------------------- -------------------- ----------

 JONES VIRGINIA 9000
 6750
 JONES MARSHA
 JONES ROBERT
 JONES LILLY

Further Examples of Field-Output-Relevant Parameters
For further examples of the parameters LC, IC, TC, AL, NL, IS, ZP and ES, and the SUSPEND IDENTICAL
SUPPRESS statement, see the following example programs in library SYSEXPG:

DISPLX17
DISPLX18
DISPLX19
SUSPEX01
SUSPEX02
COMPRX03.

105Copyright © Software AG 2003

Further Examples of Field-Output-Relevant ParametersParameters to Influence the Output of Fields

Edit Masks - EM Parameter
This document describes how you can specify an edit mask for an alphanumeric or numeric field.

The following topics are covered below:

Use of EM Parameter
Edit Masks for Numeric Fields
Edit Masks for Alphanumeric Fields
Length of Fields
Edit Masks for Date and Time Fields
Examples of Edit Masks
Further Examples of Edit Masks

Use of EM Parameter
With the session parameter EM you can specify an edit mask for an alphanumeric or numeric field, that is,
determine character by character the format in which the field values are to be output.

Example:

 DISPLAY NAME (EM=X^X^X^X^X^X^X^X^X^X)

In this example, each "X" represents one character of an alphanumeric field value to be displayed, and each "^"
represents a blank. If displayed via the DISPLAY statement, the name "JOHNSON" would appear as follows:

 J O H N S O N

You can specify the session parameter EM

at report level (in a FORMAT statement),
at statement level (in a DISPLAY, WRITE, INPUT, MOVE EDITED or PRINT statement) or
at field level (in a DISPLAY, WRITE or INPUT statement).

An edit mask specified with the session parameter EM will override a default edit mask specified for a field in
the DDM.

If EM=OFF is specified, no edit mask at all will be used.

An edit mask specified at statement level will override an edit mask specified at report level.

An edit mask specified at field level will override an edit mask specified at statement level.

Edit Masks for Numeric Fields
Edit masks for numeric fields (formats N, I, P, F) must include a "9" for each output position you want filled
with a number (even if it is zero).

A "Z" is used to indicate that the output position will be filled only if the available number is not zero.
A decimal point is indicated with a period "."

To the right of the decimal point, a "Z" must not be specified. Leading, trailing, and insertion characters - for
example, sign indicators - can be added.

Copyright © Software AG 2003106

Edit Masks - EM ParameterEdit Masks - EM Parameter

Edit Masks for Alphanumeric Fields
Edit masks for alphanumeric fields must include an "X" for each alphanumeric character that is to be output.

With a few exceptions, you may add leading, trailing and insertion characters (with or without enclosing them in
apostrophes).

The character "^" is used to insert blanks in edit mask for both numeric and alphanumeric fields.

Length of Fields
It is important to be aware of the length of the field to which you assign an edit mask.

If the edit mask is longer than the field, this will yield unexpected results.
If the edit mask is shorter than the field, the field output will be truncated to just those positions specified in
the edit mask.

Examples:

Assuming an alphanumeric field that is 12 characters long and the field value to be output is "JOHNSON", the
following edit masks will yield the following results:

 EM=X.X.X.X.X Output: J.O.H.N.S

 EM=****XXXXXX**** Output: ****JOHNSO**

Edit Masks for Date and Time Fields
Edit masks for date fields can include the characters "D" (day), "M" (month) and "Y" (year) in various
combinations.

Edit masks for time fields can include the characters "H" (hour), "I" (minute), "S" (second) and "T" (tenth of a
second) in various combinations.

In conjunction with edit masks for date and time fields, see also the date and time system variables.

Examples of Edit Masks
Some examples of edit masks, along with possible output they produce, are provided below.

In addition, the abbreviated notation for each edit mask is given. You can use either the abbreviated or the long
notation.

Edit Mask Abbreviation Output A Output B

EM=999.99 EM=9(3).9(2) 367.32 005.40

EM=ZZZZZ9 EM=Z(5)9(1) 0 579

EM=X^XXXXX EM=X(1)^X(5) B LUE A 19379

EM=XXX...XX EM=X(3)...X(2) BLU...E AAB...01

EM=MM.DD.YY * 01.05.87 12.22.86

EM=HH.II.SS.T ** 08.54.12.7 14.32.54.3

107Copyright © Software AG 2003

Edit Masks for Alphanumeric FieldsEdit Masks - EM Parameter

* Use a date system variable.

** Use a time system variable.

For further information about edit masks, see the session parameter EM in the Parameter Reference
documentation.

Example Program without EM Parameters
 ** Example Program ’EDITMX01’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 SALARY (1:3)
 2 CITY
 END-DEFINE
 READ (3) VIEWEMP BY NAME STARTING FROM ’JONES’
 DISPLAY ’N A M E’ NAME /
 ’OCCUPATION’ JOB-TITLE
 ’SALARY’ SALARY (1:3)
 ’LOCATION’ CITY
 SKIP 1
 END-READ
 END

The above program produces the following output which shows the default edit masks available:

 Page 1 97-08-19 17:26:19

 N A M E SALARY LOCATION
 OCCUPATION
 ------------------------- ---------- --------------------

 JONES 46000 TULSA
 MANAGER 42300
 39300

 JONES 50000 MOBILE
 DIRECTOR 46000
 42700

 JONES 31000 MILWAUKEE
 PROGRAMMER 29400
 27600>

Example Program with EM Parameters
 ** Example Program ’EDITMX02’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 JOB-TITLE
 2 SALARY (1:3)
 END-DEFINE
 READ (3) VIEWEMP BY NAME STARTING FROM ’JONES’

Copyright © Software AG 2003108

Edit Masks - EM ParameterExample Program without EM Parameters

 DISPLAY ’N A M E’ NAME (EM=X^X^X^X^X^X^X^X^X^X^X^X^X^X^X) /
 FIRST-NAME (EM=...X(10)...)
 ’OCCUPATION’ JOB-TITLE (EM=’ ___ ’X(12))
 ’SALARY’ SALARY (1:3) (EM=’ USD ’ZZZ,999)
 SKIP 1
 END-READ
 END

The above program produces the following output. Compare the output with that of the previous program
(Example Program without EM Parameters) to see how the EM specifications affect the way the fields are
displayed.

 Page 1 97-08-19 17:26:29

 N A M E OCCUPATION SALARY
 FIRST-NAME
 ------------------------------ ----------------- -----------

 J O N E S ___ MANAGER USD 46,000
 ..VIRGINIA ... USD 42,300
 USD 39,300

 J O N E S ___ DIRECTOR USD 50,000
 ..MARSHA ... USD 46,000
 USD 42,700

 J O N E S ___ PROGRAMMER USD 31,000
 ..ROBERT ... USD 29,400
 USD 27,600

Further Examples of Edit Masks
See the following example programs in library SYSEXPG:

EDITMX03
EDITMX04
EDITMX05

109Copyright © Software AG 2003

Further Examples of Edit MasksEdit Masks - EM Parameter

Vertical Displays
This document describes how you can combine the features of the statements DISPLAY and WRITE to produce
vertical displays of field values.

The following topics are covered:

Creating Vertical Displays
Combining DISPLAY and WRITE
Tab Notation - T*-field
Positioning Notation x/y
DISPLAY VERT Statement
Tab Notation - P*-field
Further Example of DISPLAY VERT with WRITE Statement

Creating Vertical Displays
There are two ways of creating vertical displays:

You can use a combination of the statements DISPLAY and WRITE.
You can use the VERT option of the DISPLAY statement.

Combining DISPLAY and WRITE
As described in Statements DISPLAY and WRITE, the DISPLAY statement normally presents the data in
columns with default headers, while the WRITE statement presents data horizontally without headers.

You can combine the features of the two statements to produce vertical displays of field values.

The DISPLAY statement produces the values of different fields for the same record across the page with a
column for each field. The field values for each record are displayed below the values for the previous record.

By using a WRITE statement after a DISPLAY statement, you can insert textand/or field values specified in the
WRITE statement between records displayed via the DISPLAY statement.

The following program illustrates the combination of DISPLAY and WRITE:

 ** Example Program ’WRITEX04’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 CITY
 2 DEPT
 END-DEFINE
 READ (3) VIEWEMP BY CITY STARTING FROM ’SAN FRANCISCO’
 DISPLAY NAME JOB-TITLE
 WRITE 20T ’DEPT:’ DEPT
 SKIP 1
 END-READ
 END

Copyright © Software AG 2003110

Vertical DisplaysVertical Displays

It produces the following output:

 Page 1 97-08-19 17:52:19

 NAME CURRENT
 POSITION
 -------------------- -------------------------

 KOLENCE MANAGER
 DEPT: TECH05

 GOSDEN ANALYST
 DEPT: TECH10

 WALLACE SALES PERSON
 DEPT: SALE20

Tab Notation - T*field
In the previous example, the position of the field DEPT is determined by the tab notation nT (in this case "20T",
which means that the display begins in column 20 on the screen).

Field values specified in a WRITE statement can be lined up automatically with field values specified in the first
DISPLAY statement of the program by using the tab notation T* field (where field is the name of the field to
which the field is to be aligned).

In the following program, the output produced by the WRITE statement is aligned to the field JOB-TITLE by
using the notation "T*JOB-TITLE":

 ** Example Program ’WRITEX05’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 DEPT
 2 CITY
 END-DEFINE
 READ (3) VIEWEMP BY CITY STARTING FROM ’SAN FRANCISCO’
 DISPLAY NAME JOB-TITLE
 WRITE T*JOB-TITLE ’DEPT:’ DEPT
 SKIP 1
 END-READ
 END

111Copyright © Software AG 2003

Tab Notation - T*fieldVertical Displays

 Page 1 97-08-19 17:52:19

 NAME CURRENT
 POSITION
 -------------------- -------------------------

 KOLENCE MANAGER
 DEPT: TECH05

 GOSDEN ANALYST
 DEPT: TECH10

 WALLACE SALES PERSON
 DEPT: SALE20

Positioning Notation x/y
When you use the DISPLAY and WRITE statements in sequence and multiple lines are to be produced by the
WRITE statement, you can use the notation x/y (number-slash-number) to determine in which row/column
something is to be displayed. The positioning notation causes the next element in the DISPLAY or WRITE
statement to be placed x lines below the last output, beginning in column y of the output.

The following program illustrates the use of this notation:

 ** Example Program ’WRITEX06’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 MIDDLE-I
 2 ADDRESS-LINE (1:1)
 2 CITY
 2 ZIP
 END-DEFINE
 READ (3) VIEWEMP BY CITY STARTING FROM ’NEW YORK’
 DISPLAY ’NAME AND ADDRESS’ NAME
 WRITE 1/5 FIRST-NAME 1/30 MIDDLE-I
 2/5 ADDRESS-LINE (1:1)
 3/5 CITY 3/30 ZIP /
 END-READ
 END

Copyright © Software AG 2003112

Vertical DisplaysPositioning Notation x/y

 Page 1 97-08-19 17:55:47

 NAME AND ADDRESS

 RUBIN
 SYLVIA L
 2003 SARAZEN PLACE
 NEW YORK 10036

 WALLACE
 MARY P
 12248 LAUREL GLADE C
 NEW YORK 10036

 KELLOGG
 HENRIETTA S
 1001 JEFF RYAN DR.
 NEWARK 19711

DISPLAY VERT Statement
The standard display mode in Natural is horizontal.

With the VERT clause option of the DISPLAY statement, you can override the standard display and produce a
vertical field display.

The HORIZ clause option, which can be used in the same DISPLAY statement, re-activates the standard
horizontal display mode.

Column headings in vertical mode are controlled with various forms of the AS clause:

Without AS clause, no column headings will be output.
AS CAPTIONED causes default headings to be displayed.
AS text causes the specified text to be displayed as column heading. Note that a slash (/) within the text
element in a DISPLAY statement causes a line advance.
AS text CAPTIONED causes the specified text to be displayed as column heading, and the default column
headings to be displayed immediately before the field value in each line that is output.

The following example programs illustrate the use of the DISPLAY VERT statement.

DISPLAY VERT without AS Clause

The following program has no AS clause, which means that no column headings are output.

113Copyright © Software AG 2003

DISPLAY VERT StatementVertical Displays

 ** Example Program ’DISPLX09’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 CITY
 END-DEFINE
 READ (3) VIEWEMP BY CITY STARTING FROM ’NEW YORK’
 DISPLAY VERT NAME FIRST-NAME / CITY
 SKIP 2
 END-READ
 END

Note that all field values are displayed vertically underneath one another:

 Page 1 97-08-19 17:55:47

 RUBIN
 SYLVIA

 NEW YORK

 WALLACE
 MARY

 NEW YORK

 KELLOGG
 HENRIETTA

 NEWARK

DISPLAY VERT AS CAPTIONED and HORIZ

The following program contains a VERT and a HORIZ clause, which causes some column values to be output
vertically and others horizontally; moreover AS CAPTIONED causes the default column headers to be
displayed.

 ** Example Program ’DISPLX10’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 CITY
 2 JOB-TITLE
 2 SALARY (1:1)
 END-DEFINE
 READ (3) VIEWEMP BY CITY STARTING FROM ’NEW YORK’
 DISPLAY VERT AS CAPTIONED NAME FIRST-NAME
 HORIZ JOB-TITLE SALARY (1:1)
 SKIP 1
 END-READ
 END

Copyright © Software AG 2003114

Vertical DisplaysDISPLAY VERT AS CAPTIONED and HORIZ

 Page 1 97-08-19 17:55:47

 NAME CURRENT ANNUAL
 FIRST-NAME POSITION SALARY
 -------------------- ------------------------- ----------

 RUBIN SECRETARY 17000
 SYLVIA

 WALLACE ANALYST 38000
 MARY

 KELLOGG DIRECTOR 52000
 HENRIETTA

DISPLAY VERT AS text

The following program contains an AS text clause, which displays the specified text as column header.

 ** Example Program ’DISPLX11’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 CITY
 2 JOB-TITLE
 2 SALARY (1:1)
 END-DEFINE
 READ (3) VIEWEMP BY CITY STARTING FROM ’NEW YORK’
 DISPLAY VERT AS ’EMPLOYEES’ NAME FIRST-NAME
 HORIZ JOB-TITLE SALARY (1:1)
 SKIP 1
 END-READ
 END

 Page 1 97-08-19 7:55:47

 EMPLOYEES CURRENT ANNUAL
 POSITION SALARY
 -------------------- ------------------------- ----------

 RUBIN SECRETARY 17000
 SYLVIA

 WALLACE ANALYST 38000
 MARY

 KELLOGG DIRECTOR 52000
 HENRIETTA

115Copyright © Software AG 2003

DISPLAY VERT AS textVertical Displays

DISPLAY VERT AS text CAPTIONED

The following program contains an AS text CAPTIONED clause.

 ** Example Program ’DISPLX12’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 CITY
 2 JOB-TITLE
 2 SALARY (1:1)
 END-DEFINE
 READ (3) VIEWEMP BY CITY STARTING FROM ’NEW YORK’
 DISPLAY VERT AS ’EMPLOYEES’ CAPTIONED NAME FIRST-NAME
 HORIZ JOB-TITLE SALARY (1:1)
 SKIP 1
 END-READ
 END

This clause causes the default column headers (NAME and FIRST-NAME) to be placed before the field values:

 Page 1 97-04-19 17:55:47

 EMPLOYEES CURRENT ANNUAL
 POSITION SALARY
 ------------------------------- ------------------------- ----------

 NAME RUBIN SECRETARY 17000
 FIRST-NAME SYLVIA

 NAME WALLACE ANALYST 38000
 FIRST-NAME MARY

 NAME KELLOGG DIRECTOR 52000
 FIRST-NAME HENRIETTA

Tab Notation P*field

If you use a combination of DISPLAY VERT statement and subsequent WRITE statement, you can use the tab
notation P*field-name in the WRITE statement to align the position of a field to the column and line position of
a particular field specified in the DISPLAY VERT statement.

In the following program, the fields SALARY and BONUS are displayed in the same column, SALARY in
every first line, BONUS in every second line.
The text "***SALARY PLUS BONUS***" is aligned to SALARY, which means that it is displayed in the same
column as SALARY and in the first line, whereas the text "(IN US DOLLARS)" is aligned to BONUS and
therefore displayed in the same column as BONUS and in the second line.

 ** Example Program ’WRITEX07’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 CITY
 2 NAME
 2 JOB-TITLE
 2 SALARY (1:1)
 2 BONUS (1:1,1:1)

Copyright © Software AG 2003116

Vertical DisplaysDISPLAY VERT AS text CAPTIONED

 END-DEFINE
 READ (3) VIEWEMP BY CITY STARTING FROM ’LOS ANGELES’
 DISPLAY NAME JOB-TITLE VERT AS ’INCOME’ SALARY (1) BONUS (1,1)
 WRITE P*SALARY ’***SALARY PLUS BONUS***’
 P*BONUS ’(IN US DOLLARS)’
 SKIP 1
 END-READ
 END

 Page 1 97-08-19 18:14:11

 NAME CURRENT INCOME
 POSITION
 -------------------- ------------------------- ----------

 POORE JR SECRETARY 25000
 0
 SALARY PLUS BONUS
 (IN US DOLLARS)

 PREPARATA MANAGER 46000
 9000
 SALARY PLUS BONUS
 (IN US DOLLARS)

 MARKUSH TRAINEE 22000
 0
 SALARY PLUS BONUS
 (IN US DOLLARS)

Further Example of DISPLAY VERT with WRITE
Statement
See the following example program in library SYSEXPG:

WRITEX10

117Copyright © Software AG 2003

Further Example of DISPLAY VERT with WRITE StatementVertical Displays

Object Types
This document describes the various types of Natural programming object that can be used to achieve an
efficient application structure.

The following topics are covered:

What Types of Programming Objects Are There?
Data Areas
Programs, Subprograms and Subroutines
Maps
Helproutines
Multiple Use of Source Code - Copycode
Documenting Natural Objects - Text
Creating Event Driven Applications - Dialog
Creating Component Based Applications - Class
Using Non-Natural Files - Resource

Copyright © Software AG 2003118

Object TypesObject Types

What Types of Programming Objects Are
There?
The following topics are covered:

Types of Programming Objects
Creating and Maintaining Objects

Types of Programming Objects
Within a Natural application, several types of programming objects can be used to achieve an efficient
application structure.

There are the following types of Natural programming objects:

Local Data Area
Global Data Area
Parameter Data Area
Program
Subprogram
Subroutine
Helproutine
Map
Copycode
Text
Class
Ressource

Creating and Maintaining Objects
To create and maintain all these objects, you use the Natural editors

Local data areas, global data areas and parameter data areas are created/maintained with the data area editor.
Maps are created/maintained with the map editor.
Dialogs are created/maintained with the dialog editor.
Classes are created/maintained with the Class Builder (Windows) or with the program editor (Mainframe,
UNIX).
All other types of objects listed above are created/maintained with the program editor.

119Copyright © Software AG 2003

What Types of Programming Objects Are There?What Types of Programming Objects Are There?

Data Areas
The following topics are covered:

Use of Data Areas
Local Data Area
Global Data Area
Parameter Data Area

Use of Data Areas
As explained in Defining Fields, all fields that are to be used in a program have to be defined in a DEFINE
DATA statement.

The fields can be defined within the DEFINE DATA statement itself; or they can be defined outside the program
in a separate data area, with the DEFINE DATA statement referencing that data area.

Natural supports three types of data areas:

Local Data Area
In a local data area, you define the data elements that are to be used by a single Natural module in an
application.
Global Data Area
In a global data area, you define the data elements that are to be used by more than one Natural program,
routine, etc. in an application.
Parameter Data Area
In a parameter data area, you define the fields that are passed as parameters to a subprogram, external
subroutine or helproutine.

Local Data Area
Variables defined as local are used only within a single Natural module. There are two options for defining local
data:

You can define the data within the program.
You can define the data in a local data area outside the program.

In the first example, the fields are defined within the DEFINE DATA statement of the program. In the second
example, the same fields are defined in a local data area (LDA), and the DEFINE DATA statement only contains
a reference to that data area.

Example 1 - Fields Defined within a DEFINE DATA Statement:

 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 PERSONNEL-ID
 1 #VARI-A (A20)
 1 #VARI-B (N3.2)
 1 #VARI-C (I4)
 END-DEFINE
 ...

Copyright © Software AG 2003120

Data AreasData Areas

Example 2 - Fields Defined in a Separate Data Area:

Program:

 DEFINE DATA LOCAL
 USING LDA39
 END-DEFINE
 ...

Local Data Area "LDA39":

 I T L Name F Leng Index/Init/EM/Name/Comment
 - - - -------------------------------- - ---- ---------------------------------
 V 1 VIEWEMP EMPLOYEES
 2 NAME A 20
 2 FIRST-NAME A 20
 2 PERSONNEL-ID A 8
 1 #VARI-A A 20
 1 #VARI-B N 3.2
 1 #VARI-C I 4

For a clear application structure, it is usually better to define fields in data areas outside the programs.

Global Data Area
In a global data area (GDA), you define the data elements that are to be used by more than one program, routine,
etc. in an application.

Variables defined in a global data area may be referenced by several objects in an application.

The global data area and the objects which reference it must be in the same library (or a steplib).

Global data areas must be defined with the data area editor, and a program using that data area must reference it
in the DEFINE DATA statement. Any number of main programs, external subroutines and helproutines can
share the same global data area.

121Copyright © Software AG 2003

Global Data AreaData Areas

Each object can reference only one global data area; that is, a DEFINE DATA statement must not contain more
than one GLOBAL clause.

Note:
When you build an application where multiple objects share a global data area, remember that modifications to a
global data area affect all programs or routines that reference that data area. Therefore these objects must be
STOWed again after the global data area has been modified.

When are Global Data Areas Initialized?

A global data area is initialized when it is used for the first time. It remains active in the current Natural session
(that is, the variables in the global data area retain their contents) until:

the next LOGON, or
another global data area is used on the same level (levels are described later in this section), or
a RELEASE VARIABLES statement is executed. In this case, the variables in the global data area are reset
when either the execution of the level 1 program is finished, or the program invokes another program via a
FETCH or RUN statement.

Note:
If a GDA named "COMMON" exists in a library, the program named ACOMMON is invoked automatically
when you LOGON to that library.

Parameter Data Area
Parameter data areas (PDAs) are used by subprograms and external subroutines.

A subprogram is invoked with a CALLNAT statement. With the CALLNAT statement, parameters can be
passed from the invoking object to the subprogram.

These parameters must be defined with a DEFINE DATA PARAMETER statement in the subprogram:

they can be defined in the PARAMETER clause of the DEFINE DATA statement itself; or
they can be defined in a separate parameter data area, with the DEFINE DATA PARAMETER statement
referencing that parameter data area.

Parameter Defined within DEFINE DATA PARAMETER Statement

Copyright © Software AG 2003122

Data AreasParameter Data Area

Parameter Defined in Parameter Data Area

In the same way, parameters that are passed to an external subroutine via a PERFORM statement must be
defined with a DEFINE DATA PARAMETER statement in the external subroutine.

In the invoking object, the parameter variables passed to the subprogram/ subroutine need not be defined in a
parameter data area; in the illustrations above, they are defined in the local data area used by the invoking object
(but they could also be defined in a global data area).

The sequence, format and length of the parameters specified with the CALLNAT /PERFORM statement in the
invoking object must exactly match the sequence, format and length of the fields specified in the DEFINE
DATA PARAMETER statement of the invoked subprogram/subroutine. However, the names of the variables in
the invoking object and the invoked subprogram/subroutine need not be the same (as the parameter data are
transferred by address, not by name).

123Copyright © Software AG 2003

Parameter Defined in Parameter Data AreaData Areas

Programs, Subprograms and Subroutines
This document discusses those object types which can be invoked as routines; that is, as subordinate programs.

Helproutines and maps, although they are also invoked from other objects, are strictly speaking not routines as
such, and are therefore discussed in separate documents; see Helproutines and Maps.

The following topics are covered:

A Modular Application Structure
Multiple Levels of Invoked Objects
Program
Subroutine
Subprogram
Processing Flow when Invoking a Routine

A Modular Application Structure
Typically, a Natural application does not consist of a single huge program, but is split into several modules. Each
of these modules will be a functional unit of manageable size, and each module is connected to the other
modules of the application in a clearly defined way. This provides for a well structured application, which makes
its development and subsequent maintenance a lot easier and faster.

During the execution of a main program, other programs, subprograms, subroutines, helproutines and maps can
be invoked. These objects can in turn invoke other objects (for example, a subroutine can itself invoke another
subroutine). Thus, the modular structure of an application can become quite complex and extend over several
levels.

Multiple Levels of Invoked Objects
Each invoked object is one level below the level of the object from which it was invoked; that is, with each
invocation of a subordinate object, the level number is incremented by 1.

Any program that is directly executed is at Level 1; any subprogram, subroutine, map or helproutine directly
invoked by the main program is at Level 2; when such a subroutine in turn invokes another subroutine, the latter
is at Level 3.

A program invoked with a FETCH statement from within another object is classified as a main program,
operating from Level 1. A program that is invoked with FETCH RETURN, however, is classified as a
subordinate program and is assigned a level one below that of the invoking object.

The following illustration is an example of multiple levels of invoked objects and also shows how these levels
are counted:

Copyright © Software AG 2003124

Programs, Subprograms and SubroutinesPrograms, Subprograms and Subroutines

If you wish to ascertain the level number of the object that is currently being executed, you can use the system
variable *LEVEL (which is described in the System Variables documentation).

This document discusses the following Natural object types, which can be invoked as routines (that is,
subordinate programs):

program
subroutine
subprogram

Helproutines and maps, although they are also invoked from other objects, are strictly speaking not routines as
such, and are therefore discussed in separate documents; see Helproutines and Maps.

Basically, programs, subprograms and subroutines differ from one another in the way data can be passed
between them and in their possibilities of sharing each other’s data areas. Therefore the decision which object
type to use for which purpose depends very much on the data structure of your application.

Program
A program can be executed - and thus tested - by itself.

To compile and execute a source program, you use the system command RUN.
To execute a program that already exists in compiled form, you use the system command EXECUTE.

A program can also be invoked from another object with a FETCH or FETCH RETURN statement. The
invoking object can be another program, a subprogram, subroutine or helproutine.

125Copyright © Software AG 2003

ProgramPrograms, Subprograms and Subroutines

When a program is invoked with FETCH RETURN, the execution of the invoking object will be suspended
- not terminated - and the FETCHed program will be activated as a subordinate program. When the
execution of the FETCHed program is terminated, the invoking object will be re-activated and its execution
continued with the statement following the FETCH RETURN statement.
When a program is invoked with FETCH, the execution of the invoking object will be terminated and the
FETCHed program will be activated as a main program. The invoking object will not be re-activated upon
termination of the FETCHed program.

Program Invoked with FETCH RETURN

A program invoked with FETCH RETURN can access the global data area used by the invoking object.

In addition, every program can have its own local data area, in which the fields that are to be used only within
the program are defined.

Copyright © Software AG 2003126

Programs, Subprograms and SubroutinesProgram Invoked with FETCH RETURN

However, a program invoked with FETCH RETURN cannot have its own global data area.

Program Invoked with FETCH

A program invoked with FETCH as a main program usually establishes its own global data area (as shown in the
illustration above). However, it could also use the same global data area as established by the invoking object.

Note:
A source program can also be invoked with a RUN statement; see the RUN statement in the Natural Statements
documentation.

Subroutine
The statements that make up a subroutine must be defined within a DEFINE SUBROUTINE ...
END-SUBROUTINE statement block.

127Copyright © Software AG 2003

SubroutinePrograms, Subprograms and Subroutines

A subroutine is invoked with a PERFORM statement.

A subroutine may be an inline subroutine or an external subroutine:

An inline subroutine is defined within the object which contains the PERFORM statement that invokes it.
An external subroutine is defined in a separate object - of type subroutine - outside the object which
invokes it.

If you have a block of code which is to be executed several times within an object, it is useful to use an inline
subroutine. You then only have to code this block once within a DEFINE SUBROUTINE statement block and
invoke it with several PERFORM statements.

Inline Subroutine

Copyright © Software AG 2003128

Programs, Subprograms and SubroutinesInline Subroutine

An inline subroutine can be contained within a programming object of type program, subprogram, subroutine or
helproutine.

If an inline subroutine is so large that it impairs the readability of the object in which it is contained, you may
consider putting it into an external subroutine, so as to enhance the readability of your application.

External Subroutine

An external subroutine - that is, an object of type subroutine - cannot be executed by itself. It must be invoked
from another object. The invoking object can be a program, subprogram, subroutine or helproutine.

Data Available to an Inline Subroutine

An inline subroutine has access to the local data area and the global data area used by the object in which it is
contained.

129Copyright © Software AG 2003

External SubroutinePrograms, Subprograms and Subroutines

Data Available to an External Subroutine

An external subroutine can access the global data area used by the invoking object.

Moreover, parameters can be passed with the PERFORM statement from the invoking object to the external
subroutine. These parameters must be defined either in the DEFINE DATA PARAMETER statement of the
subroutine, or in a parameter data area used by the subroutine.

In addition, an external subroutine can have its local data area, in which the fields that are to be used only within
the subroutine are defined.

However, an external subroutine cannot have its own global data area.

Subprogram
Typically, a subprogram would contain a generally available standard function that is used by various objects in
an application.

A subprogram cannot be executed by itself. It must be invoked from another object. The invoking object can be a
program, subprogram, subroutine or helproutine.

A subprogram is invoked with a CALLNAT statement.

When the CALLNAT statement is executed, the execution of the invoking object will be suspended and the
subprogram executed. After the subprogram has been executed, the execution of the invoking object will be
continued with the statement following the CALLNAT statement.

Data Available to a Subprogram

With the CALLNAT statement, parameters can be passed from the invoking object to the subprogram. These
parameters are the only data available to the subprogram from the invoking object. They must be defined either
in the DEFINE DATA PARAMETER statement of the subprogram, or in a parameter data area used by the
subprogram.

Copyright © Software AG 2003130

Programs, Subprograms and SubroutinesSubprogram

In addition, a subprogram can have its own local data area, in which the fields to be used within the subprogram
are defined.

If a subprogram in turn invokes a subroutine or helproutine, it can also establish its own global data area to be
shared with the subroutine/helproutine.

Processing Flow when Invoking a Routine
When the CALLNAT , PERFORM or FETCH RETURN statement that invokes a routine - a subprogram, an
external subroutine, or a program respectively - is executed, the execution of the invoking object is suspended
and the execution of the routine begins.

The execution of the routine continues until either its END statement is reached or processing of the routine is
stopped by an ESCAPE ROUTINE statement being executed.

In either case, processing of the invoking object will then continue with the statement following the CALLNAT,
PERFORM or FETCH RETURN statement used to invoke the routine.

131Copyright © Software AG 2003

Processing Flow when Invoking a RoutinePrograms, Subprograms and Subroutines

Example:

Copyright © Software AG 2003132

Programs, Subprograms and SubroutinesProcessing Flow when Invoking a Routine

Maps
As an alternative to dynamic screen layout specification, the INPUT statement offers the possibility to use
predefined map layouts which makes use of the Natural object type "map".

The following topics are covered:

Benefits of Using Maps
Types of Maps
Creating Maps
Starting/Stopping Map Processing

Benefits of Using Maps
Using predefined map layouts rather than dynamic screen layout specifications offers various advantages such
as:

Clearly structured applications as a result of a consequent separation of program logic and display logic.
Map layout modifications possible without making changes to the body programs.
The language of an applications’s user interface can be easily adapted for internationalization or
localization.

At least, when it comes to maintaining existing Natural applications, the profit of using programming objects
such as maps will become obvious.

Types of Maps
Maps (screen layouts) are those parts of an application which the users see on their screens.

The following types of maps exist:

Input Map
The dialog with the user is done via input maps.
Output Map
If an application produces any output report, this report can be displayed on the screen by using an output
map.
Help Map
Help maps are, in principle, like any other maps, but when they are assigned as help, additional checks are
performed to ensure their usability for help purpose.

The object type "map" comprises

the map body which defines the screen layout and
an associated parameter data area (PDA) which, as a sort of interface, contains data definitions such as
name, format, length of each field presented on a specific map.

Related Topics:

For information on selection boxes that can be attached to input fields, see SB - Selection Box in the INPUT
statement documentation and SB - Selection Box in the Natural Parameter Reference documentation.
For information on split screen maps where the upper portion may be used as an output map and the lower
portion as an input map, see Split-Screen Feature in the INPUT statement documentation.

133Copyright © Software AG 2003

MapsMaps

Creating Maps
Maps and help map layouts are created and edited in the map editor. The appropriate LDA is created and
maintained in the data area editor.

Depending on the platform on which Natural is installed, these editors have either a character user interface or a
graphical user interface.

Related Topics:

For information on using the map editor, see Map Editor in the platform-specific Natural Editor
documentation.
For information on using the map editor, see Data Area Editor in the platform-specific Natural Editor
documentation.
For a comprehensive description of the full range of possibilities provided by the Natural map editor
(character-user-interface version), see Tutorial - Using the Map Editor.
For information on , see Syntax 1 - Dynamic Screen Layout Specification in the INPUT statement
documenation.
For information on input processing using a map layout created with the map editor, see Syntax 2 - Using
Predefined Map Layout in the INPUT statement documenation.

Starting/Stopping Map Processing
An input map is invoked with an INPUT USING MAP statement.

An output map is invoked with a WRITE USING MAP statement.

Processing of a map can be stopped with an ESCAPE ROUTINE statement in a processing rule.

Copyright © Software AG 2003134

MapsCreating Maps

Helproutines
Helproutines have specific characteristics to facilitate the processing of help requests. They may be used to
implement complex and interactive help systems. They are created with the program editor.

The following topics are covered below:

Invoking Help
Specifying Helproutines
Programming Considerations for Helproutines
Passing Parameters to Helproutines
Help as a Window

Invoking Help
A Natural user can invoke a Natural helproutine either by entering the help character (the default character is
"?") in a field, or by pressing the help key (usually PF1).

Note 1:

The help character must be entered only once.
The help character must be the only character modified in the input string.
The help character must be the first character in the input string.

Note 2:
If a helproutine is specified for a numeric field, Natural will allow a question mark to be entered for the purpose
of invoking the helproutine for that field. Natural will still check that valid numeric data are provided as field
input.

If not already specified, the help key may be specified with the SET KEY statement:

 SET KEY PF1=HELP

A helproutine can only be invoked by a user if it has been specified in the program or map from which it is to be
invoked.

Specifying Helproutines
A helproutine may be specified:

in a program: at statement level and at field level;
in a map: at map level and at field level.

If a user requests help for a field for which no help has been specified, or if a user requests help without a field
being referenced, the helproutine specified at the statement or map level is invoked.

A helproutine may also be invoked by using a REINPUT USING HELP statement (either in the program itself or
in a processing rule). If the REINPUT USING HELP statement contains a MARK option, the helproutine
assigned to the MARKed field is invoked. If no field-specific helproutine is assigned, the map helproutine is
invoked.

135Copyright © Software AG 2003

HelproutinesHelproutines

A REINPUT statement in a helproutine may only apply to INPUT statements within the same helproutine.

The name of a helproutine may be specified either with the session parameter HE of an INPUT statement:

 INPUT (HE=’HELP2112’)

or using the extending field editing facility of the map editor (see Creating Maps and the Natural Editor
documentation).

The name of a helproutine may be specified as an alphanumeric constant or as an alphanumeric variable
containing the name. If it is a constant, the name of the helproutine must be specified within apostrophes.

Programming Considerations for Helproutines
Processing of a helproutine can be stopped with an ESCAPE ROUTINE statement.

Be careful when using END OF TRANSACTION or BACKOUT TRANSACTION statements in a helproutine,
because this will affect the transaction logic of the main program.

Passing Parameters to Helproutines
A helproutine can access the currently active global data area (but it cannot have its own global data area). In
addition, it can have its own local data area.

Data may also be passed from/to a helproutine via parameters. A helproutine may have up to 20 explicit
parameters and one implicit parameter. The explicit parameters are specified with the "HE" operand after the
helproutine name:

 HE=’MYHELP’,’001’

The implicit parameter is the field for which the helproutine was invoked:

 INPUT #A (A5) (HE=’YOURHELP’,’001’)

where "001" is an explicit parameter and "#A" is the implicit parameter/the field.

This is specified within the DEFINE DATA PARAMETER statement of the helproutine as:

 DEFINE DATA PARAMETER
 1 #PARM1 (A3) /* explicit parameter
 1 #PARM2 (A5) /* implicit parameter
 END-DEFINE

Please note that the implicit parameter (#PARM2 in the above example) may be omitted. The implicit parameter
is used to access the field for which help was requested, and to return data from the helproutine to the field. For
example, you might implement a calculator program as a helproutine and have the result of the calculations
returned to the field.

Note 1:
When help is called, the helproutine is called before the data are passed from the screen to the program data
areas. This means that helproutines cannot access data entered within the same screen transaction.

Once help processing is complete, the screen data will be refreshed: any fields which have been modified by the
helproutine will be updated - excluding fields which had been modified by the user before the helproutine was
invoked, but including the field for which help was requested.
Exception: If the field for which help was requested is split into several parts by dynamic attributes (DY session
parameter), and the part in which the question mark is entered is after a part modified by the user, the field
content will not be modified by the helproutine.

Copyright © Software AG 2003136

HelproutinesProgramming Considerations for Helproutines

Note 2:
Attribute control variables are not evaluated again after the processing of the helproutine, even if they have been
modified within the helproutine.

Equal Sign Option
The equal sign (=) may be specified as an explicit parameter:

 INPUT PERSONNEL-NUMBER (HE=’HELPROUT’,=)

This parameter is processed as an internal field (A65) which contains the field name (or map name if specified at
map level). The corresponding helproutine starts with:

 DEFINE DATA PARAMETER
 1 FNAME (A65) /* contains ’PERSONNEL-NUMBER’
 1 FVALUE (N8) /* value of field (optional)
 END-DEFINE

This option may be used to access one common helproutine which reads the field name and provides
field-specific help by accessing the application online documentation or the Predict data dictionary.

Array Indices
If the field selected by the help character or the help key is an array element, its indices are supplied as implicit
parameters (1 - 3 depending on rank, regardless of the explicit parameters).

The format/length of these parameters is I2.

 INPUT A(*,*) (HE=’HELPROUT’,=)

The corresponding helproutine starts with:

 DEFINE DATA PARAMETER
 1 FNAME (A65) /* contains ’A’
 1 FVALUE (N8) /* value of selected element
 1 FINDEX1 (I2) /* 1st dimension index
 1 FINDEX2 (I2) /* 2nd dimension index
 END-DEFINE
 ...

Help as a Window
The size of a help to be displayed may be smaller than the screen size. In this case, the help appears on the screen
as a window, enclosed by a frame:

137Copyright © Software AG 2003

Equal Sign OptionHelproutines

Within a helproutine, the size of the window may be specified as follows:

by a FORMAT statement (for example, to specify the page size and line size: FORMAT PS=15 LS=30);
by an INPUT USING MAP statement; in this case, the size defined for the map (in its map settings) is used;
by a DEFINE WINDOW statement; this statement allows you to either explicitly define a window size or
leave it to Natural to automatically determine the size of the window depending on its contents.

The position of a help window is computed automatically from the position of the field for which help was
requested. Natural places the window as close as possible to the corresponding field without overlaying the field.
With the DEFINE WINDOW statement, you may bypass the automatic positioning and determine the window
position yourself.

For further information on window processing, please refer to the DEFINE WINDOW statement in the Natural
Statements documentation and the terminal command %W in the Natural Terminal Commands documentation.

Copyright © Software AG 2003138

HelproutinesHelp as a Window

Multiple Use of Source Code - Copycode
This document describes the advantages and the use of copycode.

The following topics are covered:

Use of Copycode
Processing of Copycode

Use of Copycode
Copycode is a portion of source code which can be included in another object via an INCLUDE statement.

So, if you have a statement block which is to appear in identical form in several objects, you may use copycode
instead of coding the statement block several times. This reduces the coding effort and also ensures that the
blocks are really identical.

Processing of Copycode
The copycode is included at compilation; that is, the source-code lines from the copycode are not physically
inserted into the object that contains the INCLUDE statement, but they will be included in the compilation
process and are thus part of the resulting object module.

Consequently, when you modify the source code of copycode, you also have to newly compile (STOW) all
objects which use that copycode.

Copycode cannot be executed on its own. It cannot be STOWed, but only SAVEd.

For further information on copycode, please refer to the description of the INCLUDE statement in the Natural
Statements documentation.

Note:
An END statement must not be placed within a copycode.

139Copyright © Software AG 2003

Multiple Use of Source Code - CopycodeMultiple Use of Source Code - Copycode

Documenting Natural Objects - Text
The Natural object type "text" is used to write text rather than programs.

The following topics are covered:

Use of Text Objects
Writing Text

Use of Text Objects
You can use this type of object to document Natural objects in more detail than you can, for example, within the
source code of a program.

"Text" objects may also be useful at sites where Predict is not available for program documentation purposes.

Writing Text
You write the text using the Natural program editor.

The only difference in handling as opposed to writing programs, is that the text you write stays as it is, that is,
there is no lower to upper case translation or empty line suppression (provided in your editor profile Empty Line
Suppression is set to "N" and Editing in Lower Case is set to "Y", see the Natural Editor documentation for more
details).

You can write any text you wish (there is no syntax check).

"Text" objects can only be SAVEd, they cannot be STOWed. They cannot be RUN, only displayed in the editor.

Copyright © Software AG 2003140

Documenting Natural Objects - TextDocumenting Natural Objects - Text

Creating Event Driven Applications -
Dialog
Dialogs are used in conjunction with event-driven programming when creating Natural applications for graphical
user interfaces (GUIs).

For information on dialogs and event-driven programming, please refer to Event-Driven Programming in the
Natural for Windows documentation.

141Copyright © Software AG 2003

Creating Event Driven Applications - DialogCreating Event Driven Applications - Dialog

Creating Component Based Applications -
Class
Classes are used to apply an object based programming style.

On Windows platforms, classes are used to create component based applications in a client/server environment.
For more information, refer to the Natural for Windows documentation.

For information on classes, please refer to the NaturalX documentation.

Copyright © Software AG 2003142

Creating Component Based Applications - ClassCreating Component Based Applications - Class

Using Non-Natural Files - Resource
Shared and private resources are only available with Natural under UNIX and Windows. For more information,
refer to the Natural for Windows or Natural for UNIX documentation.

143Copyright © Software AG 2003

Using Non-Natural Files - ResourceUsing Non-Natural Files - Resource

Further Programming Aspects
The following topics are covered:

END/STOP Statements
Conditional Processing - IF Statement
Loop Processing
Control Breaks
Data Computation
System Variables and System Functions
Stack
Processing of Date Information

Copyright © Software AG 2003144

Further Programming AspectsFurther Programming Aspects

END/STOP Statements
The following topics are covered:

End of Program - END Statement
End of Application - STOP Statement

End of Program - END Statement
The END statement is used to mark the end of a Natural program, subprogram, external subroutine or
helproutine.

Every one of these objects must contain an END statement as the last statement.

Every object may contain only one END statement.

End of Application - STOP Statement
The STOP statement is used to terminate the execution of a Natural application. A STOP statement executed
anywhere within an application immediately stops the execution of the entire application.

145Copyright © Software AG 2003

END/STOP StatementsEND/STOP Statements

Conditional Processing - IF Statement
With the IF statement, you define a logical condition, and the execution of the statement attached to the IF
statement then depends on that condition.

The following topics are covered:

Structure of IF Statement
Example of IF Statement
Nested IF Statements
Example of Nested IF Statements
Further Example of IF Statement

Structure of IF Statement
The IF statement contains three components:

IF In the IF clause, you specify the logical condition which is to be met.

THEN In the THEN clause you specify the statement(s) to be executed if this condition is met.

ELSE
In the (optional) ELSE clause, you can specify the statement(s) to be executed if this condition is not
met.

So, an IF statement takes the following general form:

 IF condition
 THEN execute statement(s)
 ELSE execute other statement(s)
 END-IF

If you wish a certain processing to be performed only if the IF condition is not met, you can specify the clause
THEN IGNORE. The IGNORE statement causes the IF condition to be ignored if it is met.

For more information on logical conditions, see General Information of the Natural Statements documentation.

Example of IF Statement
 ** Example Program ’IFX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 BIRTH
 2 CITY
 2 SALARY (1:1)
 END-DEFINE
 *
 LIMIT 7
 READ MYVIEW BY CITY STARTING FROM ’C’
 IF SALARY (1) LT 40000 THEN
 WRITE NOTITLE ’*****’ NAME 30X ’SALARY LT 40000’
 ELSE

Copyright © Software AG 2003146

Conditional Processing - IF StatementConditional Processing - IF Statement

 DISPLAY NAME BIRTH (EM=YYYY-MM-DD) SALARY (1)
 END-IF
 END-READ
 END

The IF statement block in the above program causes the following conditional processing to be performed:

IF the salary is less than 40000, THEN the WRITE statement is to be executed;
otherwise (ELSE), that is, if the salary is 40000 or more, the DISPLAY statement is to be executed.

The program produces the following output:

 NAME DATE ANNUAL
 OF SALARY
 BIRTH
 -------------------- ---------- ----------

 ***** KEEN SALARY LT 40000
 ***** FORRESTER SALARY LT 40000
 ***** JONES SALARY LT 40000
 ***** MELKANOFF SALARY LT 40000
 DAVENPORT 1948-12-25 42000
 GEORGES 1949-10-26 182800
 ***** FULLERTON SALARY LT 40000

Nested IF Statements
It is possible to use various nested IF statements; for example, you can make the execution of a THEN clause
dependent on another IF statement which you specify in the THEN clause.

Example of Nested IF Statements
 ** Example Program ’IFX02’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 CITY
 2 SALARY (1:1)
 2 BIRTH
 2 PERSONNEL-ID
 1 MYVIEW2 VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
 1 #BIRTH (D)
 END-DEFINE
 *
 MOVE EDITED ’19450101’ TO #BIRTH (EN=YYYYMMDD)
 *
 LIMIT 20
 FND1. FIND MYVIEW WITH CITY = ’BOSTON’
 SORTED BY NAME
 IF SALARY (1) LESS THAN 20000
 THEN WRITE NOTITLE ’*****’ NAME 30X ’SALARY LT 20000’
 ELSE
 IF BIRTH GT #BIRTH
 FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (FND1.)

147Copyright © Software AG 2003

Nested IF StatementsConditional Processing - IF Statement

 DISPLAY (IS=ON) NAME BIRTH (EM=YYYY-MM-DD)
 SALARY (1) MAKE (AL=8 IS=OFF)
 END-FIND
 END-IF
 END-IF
 SKIP 1
 END-FIND
 END

The above program with nested IF statements produces the following output:

 NAME DATE ANNUAL MAKE
 OF SALARY
 BIRTH
 -------------------- ---------- ---------- --------

 ***** COHEN SALARY LT 20000

 CREMER 1972-12-14 20000 FORD

 ***** FLEMING SALARY LT 20000

 ***** GREENACRE SALARY LT 20000

 PERREAULT 1950-05-12 30500 CHRYSLER

 ***** SHAW SALARY LT 20000

 STANWOOD 1946-09-08 31000 CHRYSLER
 FORD

Further Example of IF Statement
See the following example program in library SYSEXPG:

IFX03

Copyright © Software AG 2003148

Conditional Processing - IF StatementFurther Example of IF Statement

Loop Processing
A processing loop is a group of statements which are executed repeatedly until a stated condition has been
satisfied, or as long as a certain condition prevails.

The following topics are covered:

Use of Processing Loops
Limiting Database Loops
Limiting Non-Database Loops - REPEAT Statement
Example of REPEAT Statement
Terminating a Processing Loop - ESCAPE Statement
Loops within Loops
Example of Nested FIND Statements
Referencing Statements within a Program
Example of Referencing with Line Numbers
Example with Statement Reference Labels

Use of Processing Loops
Processing loops can be subdivided into database loops and non-database loops:

Database processing loops
are those created automatically by Natural to process data selected from a database as a result of a READ,
FIND or HISTOGRAM statement.
These statements are described in the section Database Access.
Non-database processing loops
are initiated by the statements REPEAT, FOR, CALL FILE, CALL LOOP, SORT, and READ WORK
FILE.

More than one processing loop may be active at the same time. Loops may be embedded or nested within other
loops which remain active (open).

A processing loop must be explicitly closed with a corresponding END-... statement (for example,
END-REPEAT, END-FOR, etc.)

The SORT statement, which invokes the sort program of the operating system, closes all active processing loops
and initiates a new processing loop.

Limiting Database Loops
Possible Ways of Limiting Database Loops
LT Session Parameter
LIMIT Statement
Limit Notation
Priority of Limit Settings

149Copyright © Software AG 2003

Loop ProcessingLoop Processing

Possible Ways of Limiting Database Loops

With the statements READ, FIND or HISTOGRAM, you have three ways of limiting the number of repetitions
of the processing loops initiated with these statements:

using the session parameter LT,
using a LIMIT statement,
or using a limit notation in a READ/FIND/HISTOGRAM statement itself.

LT Session Parameter

With the system command GLOBALS, you can specify the session parameter LT, which limits the number of
records which may be read in a database processing loop.

Example:

GLOBALS LT=100

This limit applies to all READ, FIND and HISTOGRAM statements in the entire session.

LIMIT Statement

In a program, you can use the LIMIT statement to limit the number of records which may be read in a database
processing loop.

Example:

LIMIT 100

The LIMIT statement applies to the remainder of the program unless it is overridden by another LIMIT
statement or limit notation.

Limit Notation

With a READ, FIND or HISTOGRAM statement itself, you can specify the number of records to be read in
parentheses immediately after the statement name.

Example:

READ (10) VIEWXYZ BY NAME

This limit notation overrides any other limit in effect, but applies only to the statement in which it is specified.

Priority of Limit Settings

If the limit set with the LT parameter is smaller than a limit specified with a LIMIT statement or a limit notation,
the LT limit has priority over any of these other limits.

Limiting Non-Database Loops - REPEAT Statement
Non-database processing loops begin and end based on logical condition criteria or some other specified limiting
condition.

The REPEAT statement is discussed here as representative of a non-database loop statement.

Copyright © Software AG 2003150

Loop ProcessingLimiting Non-Database Loops - REPEAT Statement

With the REPEAT statement, you specify one or more statements which are to be executed repeatedly.
Moreover, you can specify a logical condition, so that the statements are only executed either until or as long as
that condition is met. For this purpose you use an UNTIL or WHILE clause.

If you specify the logical condition

in an UNTIL clause, the REPEAT loop will continue until the logical condition is met;
in a WHILE clause, the REPEAT loop will continue as long as the logical condition remains true.

If you specify no logical condition, the REPEAT loop must be exited with one of the following statements:

ESCAPE
terminates the execution of the processing loop and continues processing outside the loop (see below).
STOP
stops the execution of the entire Natural application.
TERMINATE
stops the execution of the Natural application and also ends the Natural session.

Example of REPEAT Statement
 ** Example Program ’REPEAX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 SALARY (1:1)
 1 #PAY1 (N8)
 END-DEFINE
 *
 READ (5) MYVIEW BY NAME WHERE SALARY (1) = 30000 THRU 39999
 MOVE SALARY (1) TO #PAY1
 REPEAT WHILE #PAY1 LT 40000
 MULTIPLY #PAY1 BY 1.1
 DISPLAY NAME (IS=ON) SALARY (1)(IS=ON) #PAY1
 END-REPEAT
 SKIP 1
 END-READ
 END

The above program produces the following output:

 Page 1 97-08-19 18:42:53

 NAME ANNUAL #PAY1
 SALARY
 -------------------- ---------- ---------

 ADKINSON 34500 37950
 41745

 33500 36850
 40535

 36000 39600
 43560

 AFANASSIEV 37000 40700

 ALEXANDER 34500 37950
 41745

151Copyright © Software AG 2003

Example of REPEAT StatementLoop Processing

Terminating a Processing Loop - ESCAPE Statement
The ESCAPE statement is used to terminate the execution of a processing loop based on a logical condition.

You can place an ESCAPE statement within loops in conditional IF statement groups, in break processing
statement groups (AT END OF DATA, AT END OF PAGE, AT BREAK), or as a stand-alone statement
implementing the basic logical conditions of a non-database loop.

The ESCAPE statement offers the options TOP and BOTTOM, which determine where processing is to continue
after the processing loop has been left via the ESCAPE statement:

ESCAPE TOP is used to continue processing at the top of the processing loop.
ESCAPE BOTTOM is used to continue processing with the first statement following the processing loop.

You can specify several ESCAPE statements within the same processing loop.

For further details and examples of the ESCAPE statement, see the Natural Statements documentation.

Loops Within Loops
A database statement can be placed within a database processing loop initiated by another database statement.
When database loop-initiating statements are embedded in this way, a "hierarchy" of loops is created, each of
which is processed for each record which meets the selection criteria.

Multiple levels of loops can be embedded. For example, non-database loops can be nested one inside the other.
Database loops can be nested inside non-database loops. Database and non-database loops can be nested within
conditional statement groups.

Example of Nested FIND Statements
The following program illustrates a hierarchy of two loops, with one FIND loop nested or embedded within
another FIND loop.

 ** Example Program ’FINDX06’
 DEFINE DATA LOCAL
 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 NAME
 2 PERSONNEL-ID
 1 VEH-VIEW VIEW OF VEHICLES
 2 MAKE
 2 PERSONNEL-ID
 END-DEFINE
 *
 FND1. FIND EMPLOY-VIEW WITH CITY = ’NEW YORK’ OR = ’BEVERLEY HILLS’
 FIND (1) VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (FND1.)
 DISPLAY NOTITLE NAME CITY MAKE
 END-FIND
 END-FIND
 END

The above program selects data from multiple files. The outer FIND loop selects from the EMPLOYEES file all
persons who live in New York or Beverley Hills. For each record selected in the outer loop, the inner FIND loop
is entered, selecting the car data of those persons from the VEHICLES file. The program produces the following
output:

Copyright © Software AG 2003152

Loop ProcessingTerminating a Processing Loop - ESCAPE Statement

 NAME CITY MAKE
 -------------------- -------------------- --------------------

 RUBIN NEW YORK FORD
 OLLE BEVERLEY HILLS GENERAL MOTORS
 ADKINSON BEVERLEY HILLS FORD
 WALLACE NEW YORK MAZDA
 SPEISER BEVERLEY HILLS FORD

Referencing Statements within a Program
Statement reference notation is used to refer to previous statements in a program in order to specify processing
over a particular range of data, to override Natural’s default referencing (as described for each statement in the
Natural Statements documentation, where applicable), or for documentation purposes.

Any Natural statement which causes a processing loop to be initiated and/or causes data elements in a database
to be accessed. For example, the following statements can be referenced:

READ
FIND
HISTOGRAM
SORT
REPEAT
FOR

When multiple processing loops are used in a program, reference notation is used to uniquely identify the
particular database field to be processed by referring back to the statement that originally accessed that field in
the database. (If a field can be referenced in such a way, this is indicated in the "Reference Permitted" column of
the "Operand Definition Table" in the statement description in the Natural Statements documentation.)

In addition, reference notation can be specified in some statements. For example:

AT START OF DATA
AT END OF DATA
AT BREAK
ESCAPE BOTTOM

Without reference notation, an AT START OF DATA, AT END OF DATA or AT BREAK statement will be
related to the outermost active READ, FIND, HISTOGRAM, SORT or READ WORK FILE loop. With
reference notation, you can relate it to another active processing loop.

If reference notation is specified with an ESCAPE BOTTOM statement, processing will continue with the first
statement following the processing loop identified by the reference notation.

Statement reference notation may be specified in the form of a statement label or a source-code line number.

A statement label consists of several characters, the last of which must be a period (.). The period serves to
identify the entry as a label.

A statement that is to be referenced is marked with a label by placing the label at the beginning of the line that
contains the statement. For example:

153Copyright © Software AG 2003

Referencing Statements within a ProgramLoop Processing

 0030 ...
 0040 READ1. READ VIEWXYZ BY NAME
 0050 ...

In the statement that references the marked statement, the label is placed in parentheses at the location indicated
in the statement’s syntax diagram (as described in the Natural Statements documentation). For example:

 AT BREAK (READ1.) OF NAME

If source-code line number are used for referencing, they must be specified as 4-digit numbers (leading zeros
must not be omitted) and in parentheses. For example:

 AT BREAK (0040) OF NAME

In a statement where the label/line number relates a particular field to a previous statement, the label/line number
is placed in parentheses after the field name. For example:

 DISPLAY NAME (READ1.) JOB-TITLE (READ1.) MAKE MODEL

Line numbers and labels can be used interchangeably.

Example of Referencing with Line Numbers
The following program uses line numbers for referencing.

In this particular example, the line numbers refer to the statements that would be referenced in any case by
default.

 0010 ** Example Program ’LABELX01’
 0020 DEFINE DATA LOCAL
 0030 1 MYVIEW1 VIEW OF EMPLOYEES
 0040 2 NAME
 0050 2 FIRST-NAME
 0060 2 PERSONNEL-ID
 0070 1 MYVIEW2 VIEW OF VEHICLES
 0080 2 PERSONNEL-ID
 0090 2 MAKE
 0100 END-DEFINE
 0110 *
 0120 LIMIT 15
 0130 READ MYVIEW1 BY NAME STARTING FROM ’JONES’
 0140 FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (0130)
 0150 IF NO RECORDS FOUND
 0160 MOVE ’***NO CAR***’ TO MAKE
 0170 END-NOREC
 0180 DISPLAY NOTITLE NAME (0130) (IS=ON) FIRST-NAME (0130) (IS=ON)
 0190 MAKE (0140)
 0200 END-FIND /* (0140)
 0210 END-READ /* (0130)
 0220 END

Example with Statement Reference Labels
The following example illustrates the use of statement reference labels.

It is identical to the previous program, except that labels are used for referencing instead of line numbers.

Copyright © Software AG 2003154

Loop ProcessingExample of Referencing with Line Numbers

 0010 ** Example Program ’LABELX02’
 0020 DEFINE DATA LOCAL
 0030 1 MYVIEW1 VIEW OF EMPLOYEES
 0040 2 NAME
 0050 2 FIRST-NAME
 0060 2 PERSONNEL-ID
 0070 1 MYVIEW2 VIEW OF VEHICLES
 0080 2 PERSONNEL-ID
 0090 2 MAKE
 0100 END-DEFINE
 0110 *
 0120 LIMIT 15
 0130 RD. READ MYVIEW1 BY NAME STARTING FROM ’JONES’
 0140 FD. FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (FD.)
 0150 IF NO RECORDS FOUND
 0160 MOVE ’***NO CAR***’ TO MAKE
 0170 END-NOREC
 0180 DISPLAY NOTITLE NAME (RD.) (IS=ON) FIRST-NAME (RD.) (IS=ON)
 0190 MAKE (FD.)
 0200 END-FIND /* (FD.)
 0210 END-READ /* (RD.)
 0220 END

Both programs produce the following output:

 NAME FIRST-NAME MAKE
 -------------------- -------------------- --------------------

 JONES VIRGINIA ***NO CAR***
 MARSHA CHRYSLER
 CHRYSLER
 ROBERT GENERAL MOTORS
 LILLY ***NO CAR***
 EDWARD GENERAL MOTORS
 MARTHA ***NO CAR***
 LAUREL GENERAL MOTORS
 KEVIN DATSUN
 GREGORY FORD
 JOPER MANFRED ***NO CAR***
 JOUSSELIN DANIEL RENAULT
 JUBE GABRIEL ***NO CAR***
 JUNG ERNST ***NO CAR***
 JUNKIN JEREMY ***NO CAR***
 KAISER REINER ***NO CAR***

155Copyright © Software AG 2003

Example with Statement Reference LabelsLoop Processing

Control Breaks
This document describes how the execution of a statement can be made dependent on a control break, and how
control breaks can be used for the evaluation of Natural system functions.

The following topics are covered:

Use of Control Breaks
AT BREAK Statement
Automatic Break Processing
Example of System Functions with AT BREAK Statement
BEFORE BREAK PROCESSING Statement
Example of BEFORE BREAK PROCESSING Statement
User-Initiated Break Processing - PERFORM BREAK PROCESSING Statement
Example of PERFORM BREAK PROCESSING Statement

Use of Control Breaks
A control break occurs when the value of a control field changes.

The execution of statements can be made dependent on a control break.

A control break can also be used for the evaluation of Natural system functions.

System functions are discussed in System Variables and System Functions. For detailed descriptions of the
system functions available, refer to the Natural System Functions documentation.

AT BREAK Statement
With the statement AT BREAK, you specify the processing which is to be performed whenever a control break
occurs, that is, whenever the value of a control field which you specify with the AT BREAK statement changes.
As a control field, you can use a database field or a user-defined variable.

The following topics are covered below:

Control Break Based on a Database Field
Control Break Based on a User-Defined Variable
Multiple Control Break Levels

Control Break Based on a Database Field

The field specified as control field in an AT BREAK statement is usually a database field.

Example:

 ...
 AT BREAK OF DEPT
 statements
 END-BREAK
 ...

Copyright © Software AG 2003156

Control BreaksControl Breaks

In this example, the control field is the database field DEPT; if the value of the field changes, for example,
FROM "SALE01" to "SALE02", the statements specified in the AT BREAK statement would be executed.

Instead of an entire field, you can also use only part of a field as a control field. With the slash-n-slash notation
"/n/" you can determine that only the first n positions of a field are to be checked for a change in value.

Example:

 ...
 AT BREAK OF DEPT /4/
 statements
 END-BREAK
 ...

In this example, the specified statements would only be executed if the value of the first 4 positions of the field
DEPT changes, for example, FROM "SALE" to "TECH"; if, however, the field value changes from "SALE01"
to "SALE02", this would be ignored and no AT BREAK processing performed.

Example of AT BREAK Statement using a Database Field:

 ** Example Program ’ATBREX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 CITY
 2 COUNTRY
 2 JOB-TITLE
 2 SALARY (1:1)
 END-DEFINE
 *
 READ (5) MYVIEW BY CITY WHERE COUNTRY = ’USA’
 DISPLAY CITY (AL=9) NAME ’POSITION’ JOB-TITLE ’SALARY’ SALARY (1)
 AT BREAK OF CITY
 WRITE / OLD(CITY) (EM=X^X^X^X^X^X^X^X^X^X^X)
 5X ’AVERAGE:’ T*SALARY AVER(SALARY(1)) //
 COUNT(SALARY(1)) ’RECORDS FOUND’ /
 END-BREAK
 AT END OF DATA
 WRITE ’TOTAL (ALL RECORDS):’ T*SALARY(1) TOTAL(SALARY(1))
 END-ENDDATA
 END-READ
 END

In the above program, the first WRITE statement is executed whenever the value of the field CITY changes.

In the AT BREAK statement, the system functions OLD, AVER and COUNT are evaluated (and output in the
WRITE statement).

In the AT END OF DATA statement, the system function TOTAL is evaluated.

The program produces the following output:

157Copyright © Software AG 2003

Control Break Based on a Database FieldControl Breaks

 Page 1 97-08-19 18:17:27

 CITY NAME POSITION SALARY
 --------- -------------------- ------------------------- ----------

 AIKEN SENKO PROGRAMMER 31500

 A I K E N AVERAGE: 31500

 1 RECORDS FOUND

 ALBUQUERQ HAMMOND SECRETARY 22000
 ALBUQUERQ ROLLING MANAGER 34000
 ALBUQUERQ FREEMAN MANAGER 34000
 ALBUQUERQ LINCOLN ANALYST 41000

 A L B U Q U E R Q U E AVERAGE: 32750

 4 RECORDS FOUND

 TOTAL (ALL RECORDS): 162500

Control Break Based on a User-Defined Variable

A user-defined variable can also be used as control field in an AT BREAK statement.

In the following program, the user-defined variable #LOCATION is used as control field.

 ** Example Program ’ATBREX02’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 CITY
 2 COUNTRY
 2 JOB-TITLE
 2 SALARY (1:1)
 1 #LOCATION (A20)
 END-DEFINE
 *
 READ (5) MYVIEW BY CITY WHERE COUNTRY = ’USA’
 BEFORE BREAK PROCESSING
 COMPRESS CITY ’USA’ INTO #LOCATION
 END-BEFORE
 DISPLAY #LOCATION ’POSITION’ JOB-TITLE ’SALARY’ SALARY (1)
 AT BREAK OF #LOCATION
 SKIP 1
 END-BREAK
 END-READ
 END

The above program produces the following output:

Copyright © Software AG 2003158

Control BreaksControl Break Based on a User-Defined Variable

 Page 1 97-08-19 18:21:23

 #LOCATION POSITION SALARY
 -------------------- ------------------------- ----------

 AIKEN USA PROGRAMMER 31500

 ALBUQUERQUE USA SECRETARY 22000
 ALBUQUERQUE USA MANAGER 34000
 ALBUQUERQUE USA MANAGER 34000
 ALBUQUERQUE USA ANALYST 41000

Multiple Control Break Levels

As explained above, the notation "/n/" allows some portion of a field to be checked for a control break. It is
possible to combine several AT BREAK statements, using an entire field as control field for one break and part
of the same field as control field for another break.

In such a case, the break at the lower level (entire field) must be specified before the break at the higher level
(part of field); that is, in the first AT BREAK statement the entire field must be specified as control field, and in
the second one part of the field.

The following example program illustrates this, using the field DEPT as well as the first 4 positions of that field
(DEPT /4/).

 ** Example Program ’ATBREX03’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 JOB-TITLE
 2 DEPT
 2 SALARY (1:1)
 2 CURR-CODE (1:1)
 END-DEFINE
 READ MYVIEW BY DEPT STARTING FROM ’SALE40’ ENDING AT ’TECH10’
 WHERE SALARY(1) GT 47000 AND CURR-CODE(1) = ’USD’
 AT BREAK OF DEPT
 WRITE ’*** LOWEST BREAK LEVEL ***’ /
 END-BREAK
 AT BREAK OF DEPT /4/
 WRITE ’*** HIGHEST BREAK LEVEL ***’
 END-BREAK
 DISPLAY DEPT NAME ’POSITION’ JOB-TITLE
 END-READ
 END

159Copyright © Software AG 2003

Multiple Control Break LevelsControl Breaks

 Page 1 97-08-19 18:24:16

 DEPARTMENT NAME POSITION
 CODE
 ---------- -------------------- -------------------------

 TECH05 HERZOG MANAGER
 TECH05 LAWLER MANAGER
 TECH05 MEYER MANAGER
 *** LOWEST BREAK LEVEL ***

 TECH10 DEKKER DBA
 *** LOWEST BREAK LEVEL ***

 *** HIGHEST BREAK LEVEL ***

In the following program, one blank line is output whenever the value of the field DEPT changes; and whenever
the value in the first 4 positions of DEPT changes, a record count is carried out by evaluating the system function
COUNT.

 ** Example Program ’ATBREX04’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 DEPT
 2 REDEFINE DEPT
 3 #GENDEP (A4)
 2 NAME
 2 SALARY (1)
 END-DEFINE
 WRITE TITLE ’** PERSONS WITH SALARY > 30000, SORTED BY DEPARTMENT **’ /
 LIMIT 9
 READ MYVIEW BY DEPT FROM ’A’ WHERE SALARY(1) > 30000
 DISPLAY ’DEPT’ DEPT NAME ’SALARY’ SALARY(1)
 AT BREAK OF DEPT
 SKIP 1
 END-BREAK
 AT BREAK OF DEPT /4/
 WRITE COUNT(SALARY(1)) ’RECORDS FOUND IN:’ OLD(#GENDEP) /
 END-BREAK
 END-READ
 END

Copyright © Software AG 2003160

Control BreaksMultiple Control Break Levels

 ** PERSONS WITH SALARY > 30000, SORTED BY DEPARTMENT **

 DEPT NAME SALARY
 ------ -------------------- ----------

 ADMA01 JENSEN 180000
 ADMA01 PETERSEN 105000
 ADMA01 MORTENSEN 320000
 ADMA01 MADSEN 149000
 ADMA01 BUHL 642000

 ADMA02 HERMANSEN 391500
 ADMA02 PLOUG 162900
 ADMA02 HANSEN 234000

 8 RECORDS FOUND IN: ADMA

 COMP01 HEURTEBISE 168800

 1 RECORDS FOUND IN: COMP

Automatic Break Processing
Automatic break processing is in effect for a processing loop which contains an AT BREAK statement. This
applies to the following statements:

FIND
READ
HISTOGRAM
SORT
READ WORK FILE

The value of the control field specified with the AT BREAK statement is checked only for records which satisfy
the selection criteria of both the WITH clause and the WHERE clause.

Natural system functions (AVER, MAX , MIN, etc.) are evaluated for each record after all statements within the
processing loop have been executed. System functions are not evaluated for any record which is rejected by
WHERE criteria.

The figure below illustrates the flow logic of automatic break processing.

161Copyright © Software AG 2003

Automatic Break ProcessingControl Breaks

Example of System Functions with AT BREAK Statement
The following example shows the use of the Natural system functions OLD, MIN, AVER, MAX , SUM and
COUNT in an AT BREAK statement (and of the system function TOTAL in an AT END OF DATA statement).

 ** Example Program ’ATBREX05’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 CITY
 2 SALARY (1:1)
 2 CURR-CODE (1:1)
 END-DEFINE
 *
 LIMIT 3
 READ MYVIEW BY CITY = ’SALT LAKE CITY’
 DISPLAY NOTITLE CITY NAME ’SALARY’ SALARY(1) ’CURRENCY’ CURR-CODE(1)
 AT BREAK OF CITY
 WRITE / OLD(CITY) (EM=X^X^X^X^X^X^X^X^X^X^X^X^X^X^X)
 31T ’ - MINIMUM:’ MIN(SALARY(1)) CURR-CODE(1) /
 31T ’ - AVERAGE:’ AVER(SALARY(1)) CURR-CODE(1) /

Copyright © Software AG 2003162

Control BreaksExample of System Functions with AT BREAK Statement

 31T ’ - MAXIMUM:’ MAX(SALARY(1)) CURR-CODE(1) /
 31T ’ - SUM:’ SUM(SALARY(1)) CURR-CODE(1) /
 33T COUNT(SALARY(1)) ’RECORDS FOUND’ /
 END-BREAK
 AT END OF DATA
 WRITE 22T ’TOTAL (ALL RECORDS):’ T*SALARY
 TOTAL(SALARY(1)) CURR-CODE(1)
 END-ENDDATA
 END-READ
 END

 CITY NAME SALARY CURRENCY
 -------------------- -------------------- ---------- --------

 SALT LAKE CITY ANDERSON 50000 USD
 SALT LAKE CITY SAMUELSON 24000 USD

 S A L T L A K E C I T Y - MINIMUM: 24000 USD
 - AVERAGE: 37000 USD
 - MAXIMUM: 50000 USD
 - SUM: 74000 USD
 2 RECORDS FOUND

 SAN DIEGO GEE 60000 USD

 S A N D I E G O - MINIMUM: 60000 USD
 - AVERAGE: 60000 USD
 - MAXIMUM: 60000 USD
 - SUM: 60000 USD
 1 RECORDS FOUND

 TOTAL (ALL RECORDS): 134000 USD

BEFORE BREAK PROCESSING Statement
With the PERFORM BREAK PROCESSING statement, you can specify statements that are to be executed
immediately before a control break; that is, before the value of the control field is checked, before the statements
specified in the AT BREAK block are executed, and before any Natural system functions are evaluated.

Example of BEFORE BREAK PROCESSING Statement
 ** Example Program ’BEFORX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 SALARY (1:1)
 2 BONUS (1:1,1:1)
 1 #INCOME (P11)
 END-DEFINE
 *
 LIMIT 5
 READ MYVIEW BY NAME FROM ’B’
 BEFORE BREAK PROCESSING
 COMPUTE #INCOME = SALARY(1) + BONUS(1,1)

163Copyright © Software AG 2003

BEFORE BREAK PROCESSING StatementControl Breaks

 END-BEFORE
 DISPLAY NOTITLE NAME FIRST-NAME (AL=10)
 ’ANNUAL/INCOME’ #INCOME
 ’SALARY’ SALARY(1) (LC==) / ’+ BONUS’ BONUS(1,1) (IC=+)
 AT BREAK OF #INCOME
 WRITE T*#INCOME ’-’(24)
 END-BREAK
 END-READ
 END

 NAME FIRST-NAME ANNUAL SALARY
 INCOME + BONUS
 -------------------- ---------- ------------ -----------
 BACHMANN HANS 297546 = 293546
 +4000

 BAECKER JOHANNES 420244 = 413644
 +6600

 BAECKER KARL 52650 = 48600
 +4050

 BAGAZJA MARJAN 152700 = 129700
 +23000

 BAILLET PATRICK 198500 = 188000
 +10500

User-Initiated Break Processing - PERFORM BREAK
PROCESSING Statement
With automatic break processing, the statements specified in an AT BREAK block are executed whenever the
value of the specified control field changes - regardless of the position of the AT BREAK statement in the
processing loop.

With a PERFORM BREAK PROCESSING statement, you can perform break processing at a specified position
in a processing loop: the PERFORM BREAK PROCESSING statement is executed when it is encountered in the
processing flow of the program.

Immediately after the PERFORM BREAK PROCESSING, you specify one or more AT BREAK statement
blocks:

 ...
 PERFORM BREAK PROCESSING
 AT BREAK OF field1
 statements
 END-BREAK
 AT BREAK OF field2
 statements
 END-BREAK
 ...

When a PERFORM BREAK PROCESSING is executed, Natural checks if a break has occurred; that is, if the
value of the specified control field has changed; and if it has, the specified statements are executed.

Copyright © Software AG 2003164

Control BreaksUser-Initiated Break Processing - PERFORM BREAK PROCESSING Statement

With PERFORM BREAK PROCESSING, system functions are evaluated before Natural checks if a break has
occurred.

The following figure illustrates the flow logic of user-initiated break processing:

Example of PERFORM BREAK PROCESSING
Statement
 ** Example Program ’PERFBX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 DEPT
 2 SALARY (1:1)
 1 #CNTL (N2)
 END-DEFINE
 *
 LIMIT 7
 READ MYVIEW BY DEPT
 AT BREAK OF DEPT /* <- automatic break processing
 SKIP 1

165Copyright © Software AG 2003

Example of PERFORM BREAK PROCESSING StatementControl Breaks

 WRITE ’SUMMARY FOR ALL SALARIES ’
 ’SUM:’ SUM(SALARY(1))
 ’TOTAL:’ TOTAL(SALARY(1))
 ADD 1 TO #CNTL
 END-BREAK
 IF SALARY (1) GREATER THAN 100000 OR BREAK #CNTL
 PERFORM BREAK PROCESSING /* <- user-initiated break processing
 AT BREAK OF #CNTL
 WRITE ’SUMMARY FOR SALARY GREATER 100000’
 ’SUM:’ SUM(SALARY(1))
 ’TOTAL:’ TOTAL(SALARY(1))
 END-BREAK
 END-IF
 IF SALARY (1) GREATER THAN 150000 OR BREAK #CNTL
 PERFORM BREAK PROCESSING /* <- user-initiated break processing
 AT BREAK OF #CNTL
 WRITE ’SUMMARY FOR SALARY GREATER 150000’
 ’SUM:’ SUM(SALARY(1))
 ’TOTAL:’ TOTAL(SALARY(1))
 END-BREAK
 END-IF
 DISPLAY NAME DEPT SALARY(1)
 END-READ
 END

 Page 1 97-08-18 17:11:11

 NAME DEPARTMENT ANNUAL
 CODE SALARY
 -------------------- ---------- ----------

 JENSEN ADMA01 180000
 PETERSEN ADMA01 105000
 MORTENSEN ADMA01 320000
 MADSEN ADMA01 149000
 BUHL ADMA01 642000

 SUMMARY FOR ALL SALARIES SUM: 1396000 TOTAL: 1396000
 SUMMARY FOR SALARY GREATER 100000 SUM: 1396000 TOTAL: 1396000
 SUMMARY FOR SALARY GREATER 150000 SUM: 1142000 TOTAL: 1142000
 HERMANSEN ADMA02 391500
 PLOUG ADMA02 162900

 SUMMARY FOR ALL SALARIES SUM: 554400 TOTAL: 1950400
 SUMMARY FOR SALARY GREATER 100000 SUM: 554400 TOTAL: 1950400
 SUMMARY FOR SALARY GREATER 150000 SUM: 554400 TOTAL: 1696400

Further Example of AT BREAK Statement
See the following example program in library SYSEXPG:

ATBREX06

Copyright © Software AG 2003166

Control BreaksFurther Example of AT BREAK Statement

Data Computation
This document discusses arithmetic statements that are used for computing data and statements that are used to
transfer the value of an operand into one or more fields.

The following topics are covered:

Statements Used for Computing Data or Transferring Values
COMPUTE Statement
Statements MOVE and COMPUTE
Statements ADD, SUBTRACT, MULTIPLY and DIVIDE
Example of MOVE, SUBTRACT and COMPUTE Statements
COMPRESS Statement
Example of COMPRESS and MOVE Statements
Example of COMPRESS Statement
Mathematical Functions
Further Examples of COMPUTE, MOVE and COMPRESS Statements

Statements Used for Computing Data or Transferring
Values
This document discusses the arithmetic statements:

COMPUTE
ADD
SUBTRACT
MULTIPLY
DIVIDE

In addition, the following statements are discussed which are used to transfer the value of an operand into one or
more fields:

MOVE
COMPRESS

Format of Fields

For optimum processing, user-defined variables used in arithmetic statements should be defined with format P
(packed numeric).

COMPUTE Statement
The COMPUTE statement is used to perform arithmetic operations. The following connecting operators are
available:

167Copyright © Software AG 2003

Data ComputationData Computation

Exponentiation **

Multiplication *

Division /

Addition +

Subtraction -

Parentheses may be used to indicate logical grouping.

Example 1:

 COMPUTE LEAVE-DUE = LEAVE-DUE * 1.1

In this example, the value of the field LEAVE-DUE is multiplied by 1.1, and the result is placed in the field
LEAVE-DUE.

Example 2:

 COMPUTE #A = SQRT (#B)

In this example, the square root of the value of the field #B is evaluated, and the result is assigned to the field
#A.

"SQRT" is a mathematical function supported in the following arithmetic statements:

COMPUTE
ADD
SUBTRACT
MULTIPLY
DIVIDE

For an overview of mathematical functions, see Mathematical Functions below.

Example 3:

 COMPUTE #INCOME = BONUS (1,1) + SALARY (1)

In this example, the first bonus of the current year and the current salary amount are added and assigned to the
field #INCOME.

Statements MOVE and COMPUTE
The statements MOVE and COMPUTE can be used to transfer the value of an operand into one or more fields.
The operand may be a constant such as a text item or a number, a database field, a user-defined variable, a
system variable, or, in certain cases, a system function.

The difference between the two statements is that in the MOVE statement the value to be moved is specified on
the left; in the COMPUTE statement the value to be assigned is specified on the right, as shown in the following
examples.

Examples:

 MOVE NAME TO #LAST-NAME
 COMPUTE #LAST-NAME = NAME

Copyright © Software AG 2003168

Data ComputationStatements MOVE and COMPUTE

Statements ADD, SUBTRACT, MULTIPLY and DIVIDE
The ADD, SUBTRACT, MULTIPLY and DIVIDE statements are used to perform arithmetic operations.

Examples:

 ADD +5 -2 -1 GIVING #A
 SUBTRACT 6 FROM 11 GIVING #B
 MULTIPLY 3 BY 4 GIVING #C
 DIVIDE 3 INTO #D GIVING #E

All four statements have a ROUNDED option, which you can use if you wish the result of the operation to be
rounded.

For rules on rounding, see Rules for Arithmetic Assignment.

The Natural Statements documentation provides more detailed information on these statements.

Example of MOVE, SUBTRACT and COMPUTE
Statements
The following program demonstrates the use of user-defined variables in arithmetic statements. It calculates the
ages and wages of three employees and outputs these.

 ** Example Program ’COMPUX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 BIRTH
 2 JOB-TITLE
 2 SALARY (1:1)
 2 BONUS (1:1,1:1)
 1 #DATE (N8)
 1 REDEFINE #DATE
 2 #YEAR (N4)
 2 #MONTH (N2)
 2 #DAY (N2)
 1 #BIRTH-YEAR (A4)
 1 REDEFINE #BIRTH-YEAR
 2 #BIRTH-YEAR-N (N4)
 1 #AGE (N3)
 1 #INCOME (P9)
 END-DEFINE
 *
 MOVE *DATN TO #DATE
 *
 READ (3) MYVIEW BY NAME STARTING FROM ’JONES’
 MOVE EDITED BIRTH (EM=YYYY) TO #BIRTH-YEAR
 SUBTRACT #BIRTH-YEAR-N FROM #YEAR GIVING #AGE
 COMPUTE #INCOME = BONUS (1:1,1:1) + SALARY (1:1)
 DISPLAY NAME ’POSITION’ JOB-TITLE #AGE #INCOME
 END-READ
 END

169Copyright © Software AG 2003

Statements ADD, SUBTRACT, MULTIPLY and DIVIDEData Computation

 Page 1 99-01-22 12:42:50

 NAME POSITION #AGE #INCOME
 -------------------- ------------------------- ---- ----------

 JONES MANAGER 58 55000
 JONES DIRECTOR 53 50000
 JONES PROGRAMMER 43 31000

COMPRESS Statement
The COMPRESS statement is used to transfer (combine) the contents of two or more operands into a single
alphanumeric field.

Leading zeros in a numeric field and trailing blanks in an alphanumeric field are suppressed before the field
value is moved to the receiving field.

By default, the transferred values are separated from one another by a single blank in the receiving field. Other
separating possibilities are described in the Natural Statements documentation.

Example:

 COMPRESS ’NAME:’ FIRST-NAME #LAST-NAME INTO #FULLNAME

In this example, a text constant (’NAME:’), a database field (FIRST-NAME) and a user-defined variable
(#LAST-NAME) are combined into one user-defined variable (#FULLNAME) using a COMPRESS statement.

For further information on the COMPRESS statement, please refer to the COMPRESS statement description in
the Natural Statements documentation.

Example of COMPRESS and MOVE Statements
 ** Example Program ’ComPRX01’
 DEFINE DATA LOCAL
 1 MYVIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 MIDDLE-I
 1 #LAST-NAME (A15)
 1 #FULL-NAME (A30)
 END-DEFINE
 *
 READ (3) MYVIEW BY NAME STARTING FROM ’JONES’
 MOVE NAME TO #LAST-NAME
 COMPRESS ’NAME:’ FIRST-NAME MIDDLE-I #LAST-NAME INTO #FULL-NAME
 DISPLAY #FULL-NAME (UC==) FIRST-NAME ’I’ MIDDLE-I (AL=1) NAME
 END-READ
 END

The above program illustrates the use of the statements MOVE and COMPRESS. Notice the output format of the
compressed field:

Copyright © Software AG 2003170

Data ComputationCOMPRESS Statement

 Page 1 97-08-18 17:47:03

 #FULL-NAME FIRST-NAME I NAME
 ============================== -------------------- - --------------------

 NAME: VIRGINIA J JONES VIRGINIA J JONES
 NAME: MARSHA JONES MARSHA JONES
 NAME: ROBERT B JONES ROBERT B JONES

In multiple-line displays, it may be useful to combine fields/text in a user-defined variables by using a
COMPRESS statement.

Example of COMPRESS Statement
In the following program, three user-defined variables are used: #FULLSAL, #FULLNAME, and #FULLCITY.
#FULLSAL, for example, contains the text ’SALARY:’ and the database fields SALARY and CURR-CODE.
The WRITE statement then references only the compressed variables.

 ** Example Program ’COMPRX02’
 DEFINE DATA LOCAL
 1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 SALARY (1:1)
 2 CURR-CODE (1:1)
 2 CITY
 2 ADDRESS-LINE (1:1)
 2 ZIP
 1 #FULLSAL (A25)
 1 #FULLNAME (A25)
 1 #FULLCITY (A25)
 END-DEFINE
 READ (3) VIEWEMP BY CITY STARTING FROM ’NEW YORK’
 COMPRESS ’SALARY:’ CURR-CODE(1) SALARY(1) INTO #FULLSAL
 COMPRESS FIRST-NAME NAME INTO #FULLNAME
 COMPRESS ZIP CITY INTO #FULLCITY
 DISPLAY ’NAME AND ADDRESS’ NAME (EM=X^X^X^X^X^X^X^X^X^X^X^X)
 WRITE 1/5 #FULLNAME 1/37 #FULLSAL
 2/5 ADDRESS-LINE (1)
 3/5 #FULLCITY
 SKIP 1
 END-READ
 END

171Copyright © Software AG 2003

Example of COMPRESS StatementData Computation

 Page 1 97-08-19 18:01:17

 NAME AND ADDRESS

 R U B I N
 SYLVIA RUBIN SALARY: USD 17000
 2003 SARAZEN PLACE
 10036 NEW YORK

 W A L L A C E
 MARY WALLACE SALARY: USD 38000
 12248 LAUREL GLADE C
 10036 NEW YORK

 K E L L O G G
 HENRIETTA KELLOGG SALARY: USD 52000
 1001 JEFF RYAN DR.
 19711 NEWARK

Mathematical Functions
The following Natural mathematical functions are supported in arithmetic processing statements (ADD,
COMPUTE, DIVIDE, SUBTRACT, MULTIPLY).

Mathematical Function Natural System Function

Absolute value of field. ABS(field)

Arc tangent of field. ATN(field)

Cosine of field. COS(field)

Exponential of field. EXP(field)

Fractional part of field. FRAC(field)

Integer part of field. INT(field)

Natural logarithm of field. LOG(field)

Sign of field. SGN(field)

Sine of field. SIN(field)

Square root of field. SQRT(field)

Tangent of field. TAN(field)

Numeric value of an alphanumeric field. VAL(field)

See also the Natural System Functions documentation for a detailed explanation of each mathematical function
and for platform-specific information.

Copyright © Software AG 2003172

Data ComputationMathematical Functions

Further Examples of COMPUTE, MOVE and
COMPRESS Statements
See the following example programs in library SYSEXPG:

WRITEX11
IFX03
COMPRX03

173Copyright © Software AG 2003

Further Examples of COMPUTE, MOVE and COMPRESS StatementsData Computation

System Variables and System Functions
This document describes the purpose of Natural system variables and Natural system functions and how they are
used in Natural programs.

The following topics are covered:

System Variables
System Functions
Example of System Variables and System Functions
Further Examples of System Variables
Further Examples of System Functions

System Variables
Natural system variables provide variable information, for example, about the current Natural session:

the current library,
the user and terminal identification;
the current status of a loop processing;
the current report processing status;
the current date and time.

The information contained in a system variable may be used in Natural programs by specifying the appropriate
system variables. For example, date and time system variables may be specified in a DISPLAY, WRITE,
PRINT, MOVE or COMPUTE statement.

The names of all system variables begin with an asterisk (*). The typical use of system variables is illustrated in
the example programs below.

The Natural system variables are grouped as follows:

Application Related System Variables
Date and Time System Variables
Input/Ouput Related System Variables
Natural Environment Related System Variables
System Environment Related System Variables
XML Related System Variables

For detailed descriptions of all system variables, see in the Natural System Variables reference documentation.

System Functions
Natural system functions comprise a set of statistical and mathematical functions that can be applied to the data
after a record has been processed, but before break processing occurs.

System functions may be specified in a DISPLAY, WRITE, PRINT, MOVE or COMPUTE statement that is
used in conjunction with an AT END OF PAGE, AT END OF DATA or AT BREAK statement.

In the case of an AT END OF PAGE statement, the corresponding DISPLAY statement must include the GIVE
SYSTEM FUNCTIONS clause (as shown in the example below).

Copyright © Software AG 2003174

System Variables and System FunctionsSystem Variables and System Functions

The following functional groups of system functions exist:

System Functions for Use in Processing Loops
Mathematical Functions
Miscellaneous Functions

For detailed information on all system functions available, see Natural System Functions.

See also Using System Functions in Processing Loops in the System Functions reference documentation.

The typical use of system functions is explained in the example programs given below and in the examples
contained in library SYSEXPG.

Example of System Variables and System Functions
The following example program illustrates the use of system variables and system functions:

 ** Example Program ’SYSVAX01’
 DEFINE DATA LOCAL
 1 MYVIEW VIEW OF EMPLOYEES
 2 CITY
 2 NAME
 2 JOB-TITLE
 2 INCOME (1:1)
 3 CURR-CODE
 3 SALARY
 3 BONUS (1:1)
 END-DEFINE
 *
 WRITE TITLE ’EMPLOYEE SALARY REPORT AS OF’ *DAT4E /
 READ (3) MYVIEW BY CITY STARTING FROM ’E’
 DISPLAY GIVE SYSTEM FUNCTIONS
 NAME (AL=15) JOB-TITLE (AL=15) INCOME (1:1)
 AT START OF DATA
 WRITE ’REPORT CREATED AT:’ *TIME ’HOURS’ /
 END-START
 AT END OF DATA
 WRITE / ’LAST PERSON SELECTED:’ OLD (NAME) /
 END-ENDDATA
 END-READ
 AT END OF PAGE
 WRITE ’AVERAGE SALARY:’ AVER(SALARY(1))
 END-ENDPAGE
 END

Explanation:

The system variable *DATE is output with the WRITE TITLE statement.
The system variable *TIME is output with the AT START OF DATA statement.
The system function OLD is used in the AT END OF DATA statement.
The system function AVER is used in the AT END OF PAGE statement.

Note how the system variables and system function are displayed:

175Copyright © Software AG 2003

Example of System Variables and System FunctionsSystem Variables and System Functions

 EMPLOYEE SALARY REPORT AS OF 18/01/1999

 NAME CURRENT INCOME
 POSITION
 CURRENCY ANNUAL BONUS
 CODE SALARY
 --------------- --------------- -------- ---------- --------

 REPORT CREATED AT: 11:51:29.3 HOURS

 DUYVERMAN PROGRAMMER USD 34000 0
 PRATT SALES PERSON USD 38000 9000
 MARKUSH TRAINEE USD 22000 0

 LAST PERSON SELECTED: MARKUSH

 AVERAGE SALARY: 31333

Further Examples of System Variables
See the following example programs in library SYSEXPG:

EDITMX05
READX04
WTITLX01

Further Examples of System Functions
See the following example programs in library SYSEXPG:

ATBREX06
ATENPX01

Copyright © Software AG 2003176

System Variables and System FunctionsFurther Examples of System Variables

Stack
The Natural stack is a kind of "intermediate storage" in which you can store Natural commands, user-defined
commands, and input data to be used by an INPUT statement.

The following topics are covered:

Use of Natural Stack
Stack Processing
Placing Data in the Stack
Clearing the Stack

Use of Natural Stack
In the stack you can store a series of functions which are frequently executed one after the other, such as a series
of logon commands.

The data/commands stored in the stack are "stacked" on top of one another. You can decide whether to put them
on top or at the bottom of the stack. The data/command in the stack can only be processed in the order in which
they are stacked, beginning from the top of the stack.

In a program, you may reference the system variable *DATA to determine the content of the stack (see the
System Variables documentation for further information).

The total size of the stack is defined by the remaining portion in the ESIZE buffer after allocation for the global
data area and the program source area.

Stack Processing
The processing of the commands/data stored in the stack differs depending on the function being performed.

If a command is expected, that is, the NEXT prompt is about to be displayed, Natural first checks if a command
is on the top of the stack. If there is, the NEXT prompt is suppressed and the command is read and deleted from
the stack; the command is then executed as if it had been entered manually in response to the NEXT prompt.

If an INPUT statement containing input fields is being executed, Natural first checks if there are any input data
on the top of the stack. If there are, these data are passed to the INPUT statement (in delimiter mode); the data
read from the stack must be format-compatible with the variables in the INPUT statement; the data are then
deleted from the stack.

If an INPUT statement was executed using data from the stack, and this INPUT statement is re-executed via a
REINPUT statement, the INPUT statement screen will be re-executed displaying the same data from the stack as
when it was executed originally. With the REINPUT statement, no further data are read from the stack.

When a Natural program terminates normally, the stack is flushed beginning from the top until either a command
is on the top of the stack or the stack is cleared. When a Natural program is terminated via the terminal command
"%%" or with an error, the stack is cleared entirely.

177Copyright © Software AG 2003

StackStack

Placing Data on the Stack
The following methods can be used to place data/commands on the stack:

STACK Parameter
STACK Statement
FETCH and RUN Statements

STACK Parameter

The Natural profile parameter STACK may be used to place data/commands on the stack. The STACK
parameter, which is described in the Natural Parameter Reference documentation, can be specified by the
Natural administrator in the Natural parameter module at the installation of Natural; or you can specify it as a
dynamic parameter when you invoke Natural.

When data/commands are to be placed on the stack via the STACK parameter, multiple commands must be
separated from one another by a semicolon (;). If a command is to be passed within a sequence of data or
command elements, it must be preceded by a semicolon.

Data for multiple INPUT statements must be separated from one another by a colon (:). Data that are to be read
by a separate INPUT statement must be preceded by a colon. If a command is to be stacked which requires
parameters, no colon is to be placed between the command and the parameters.

Semicolon and colon must not be used within the input data themselves as they will be interpreted as separation
characters.

STACK Statement

The STACK statement can be used within a program to place data/commands in the stack. The data elements
specified in one STACK statement will be used for one INPUT statement, which means that if data for multiple
INPUT statements are to be placed on the stack, multiple STACK statements must be used.

Data may be placed on the stack either unformatted or formatted:

If unformatted data are read from the stack, the data string is interpreted in delimiter mode and the
characters specified with the session parameters IA (Input Assignment character) and ID (Input Delimiter
character) are processed as control characters for keyword assignment and data separation.
If formatted data are placed on the stack, each content of a field will be separated and passed to one input
field in the corresponding INPUT statement.

See the Natural Statements documentation for further information on the STACK statement.

FETCH and RUN Statements

The execution of a FETCH or RUN statement that contains parameters to be passed to the invoked program will
result in these parameters being placed on top of the stack.

Clearing the Stack
The contents of the stack can be deleted with the RELEASE statement. See the Natural Statements
documentation for details on the RELEASE statement.

Note:
When a Natural program is terminated via the terminal command "%%" or with an error, the stack is cleared
entirely.

Copyright © Software AG 2003178

StackPlacing Data on the Stack

Processing of Date Information
This section covers various aspects concerning the handling of date information in Natural applications.

The following topics are covered:

Edit Masks for Date Fields and Date System Variables
Default Edit Mask for Date - DTFORM Parameter
Date Format for Alphanumeric Representation - DF Parameter
Date Format for Output - DFOUT Parameter
Date Format for Stack - DFSTACK Parameter
Year Sliding Window - YSLW Parameter
Combinations of DFSTACK and YSLW
Date Format for Default Page Title - DFTITLE Parameter

Edit Masks for Date Fields and Date System Variables
If you wish the value of a date field to be output in a specific representation, you usually specify an edit mask for
the field. With an edit mask, you determine character by character what the output is to look like.

If you wish to use the current date in a specific representation, you need not define a date field and specify an
edit mask for it; instead you can simply use a date system variable. Natural provides various date system
variables, which contain the current date in different representations. Some of these representations contain a
2-digit year component, some a 4-digit year component.

For more information and a list of all date system variables, see the System Variables documentation.

Default Edit Mask for Date - DTFORM Parameter
The profile parameter DTFORM determines the default format used for dates as part of the default title on
Natural reports, for date constants and for date input.

This date format determines the sequence of the day, month and year components of a date, as well as the
delimiter characters to be used between these components.

Possible DTFORM settings are:

Setting Date Format* Example

DTFORM=I yyyy-mm-dd 1997-12-31

DTFORM=G dd.mm.yyyy 31.12.1997

DTFORM=E dd/mm/yyyy 31/12/1997

DTFORM=U mm/dd/yyyy 12/31/1997

* dd = day, mm = month, yyyy = year.

The DTFORM parameter can be set in the Natural parameter module/file or dynamically when Natural is
invoked. By default, DTFORM=I applies.

179Copyright © Software AG 2003

Processing of Date InformationProcessing of Date Information

Date Format for Alphanumeric Representation - DF
Parameter
The session parameter DF only applies to date fields for which no edit mask is specified.

If an edit mask is specified, the representation of the field value is determined by the edit mask. If no edit mask is
specified, the representation of the field value is determined by the session parameter DF in combination with the
profile parameter DTFORM.

With the DF parameter, you can choose one of the following date representations:

DF=S 8-byte representation with 2-digit year component and delimiters (yy-mm-dd).

DF=I 8-byte representation with 4-digit year component without delimiters (yyyymmdd).

DF=L 10-byte representation with 4-digit year component and delimiters (yyyy-mm-dd).

For each representation, the sequence of the day, month and year components, and the delimiter characters used,
are determined by the DTFORM parameter.

By default, DF=S applies (except for INPUT statements; see below).

The session parameter DF is evaluated at compilation.

It can be specified with the following statements:

FORMAT,
INPUT, DISPLAY, WRITE and PRINT (at statement and field level),
MOVE, COMPRESS, STACK, RUN and FETCH (at field level).

When specified in one of these statements, the DF parameter applies to the following:

Statement: Effect of DF parameter:

DISPLAY,
WRITE,
PRINT

When the value of a date variable is output with one of these statements, the value is
converted to an alphanumeric representation before it is output. The DF parameter determines
which representation is used.

MOVE,
COMPRESS

When the value of a date variable is transferred to an alphanumeric field with a MOVE or
COMPRESS statement, the value is converted to an alphanumeric representation before it is
transferred. The DF parameter determines which representation is used.

STACK, RUN,
FETCH

When the value of a date variable is placed on the stack, it is converted to alphanumeric
representation before it is placed on the stack. The DF parameter determines which
representation is used.
The same applies when a date variable is specified as a parameter in a FETCH or RUN
statement (as these parameters are also passed via the stack).

INPUT When a data variable is used in an INPUT statement, the DF parameter determines how a
value must be entered in the field.
However, when a date variable for which no DF parameter is specified is used in an INPUT
statement, the date can be entered either with a 2-digit year component and delimiters or with
a 4-digit year component and no delimiters. In this case, too, the sequence of the day, month
and year components, and the delimiter characters to be used, are determined by the
DTFORM parameter.

Copyright © Software AG 2003180

Processing of Date InformationDate Format for Alphanumeric Representation - DF Parameter

Note:
With DF=S, only 2 digits are provided for the year information; this means that if a date value contained the
century, this information would be lost during the conversion. To retain the century information, you set DF=I or
DF=L.

Examples of DF Parameter with WRITE Statements

These examples assume that DTFORM=G applies.

 /* DF=S (default)
 WRITE *DATX /* Output has this format: dd.mm.yy
 END

 FORMAT DF=I
 WRITE *DATX /* Output has this format: ddmmyyyy
 END

 FORMAT DF=L
 WRITE *DATX /* Output has this format: dd.mm.yyyy
 END

Example of DF Parameter with MOVE Statement

This example assumes that DTFORM=E applies.

 DEFINE DATA LOCAL
 1 #DATE (D) INIT <D’31/12/1997’>
 1 #ALPHA (A10)
 END-DEFINE
 ...
 MOVE #DATE TO #ALPHA /* Result: #ALPHA contains 31/12/97
 MOVE #DATE (DF=I) TO #ALPHA /* Result: #ALPHA contains 31121997
 MOVE #DATE (DF=L) TO #ALPHA /* Result: #ALPHA contains 31/12/1997
 ...

Example of DF Parameter with STACK Statement

This example assumes that DTFORM=I applies.

 DEFINE DATA LOCAL
 1 #DATE (D) INIT <D’1997-12-31’>
 1 #ALPHA1(A10)
 1 #ALPHA2(A10)
 1 #ALPHA3(A10)
 END-DEFINE
 ...
 STACK TOP DATA #DATE (DF=S) #DATE (DF=I) #DATE (DF=L)
 ...
 INPUT #ALPHA1 #ALPHA2 #ALPHA3
 ...
 /* Result: #ALPHA1 contains 97-12-31
 /* #ALPHA2 contains 19971231
 /* #ALPHA3 contains 1997-12-31
 ...

181Copyright © Software AG 2003

Examples of DF Parameter with WRITE StatementsProcessing of Date Information

Example of DF Parameter with INPUT Statement

This example assumes that DTFORM=I applies.

 DEFINE DATA LOCAL
 1 #DATE1 (D)
 1 #DATE2 (D)
 1 #DATE3 (D)
 1 #DATE4 (D)
 END-DEFINE
 ...
 INPUT #DATE1 (DF=S) /* Input must have this format: yy-mm-dd
 #DATE2 (DF=I) /* Input must have this format: yyyymmdd
 #DATE3 (DF=L) /* Input must have this format: yyyy-mm-dd
 #DATE4 /* Input must have this format: yy-mm-dd or yyyymmdd
 ...

Date Format for Output - DFOUT Parameter
The session/profile parameter DFOUT only applies to date fields in INPUT, DISPLAY, WRITE and PRINT
statements for which no edit mask is specified, and for which no DF parameter applies.

For date fields which are displayed by INPUT, DISPLAY, PRINT and WRITE statements and for which neither
an edit mask is specified nor a DF parameter applies, the profile/session parameter DFOUT determines the
format in which the field values are displayed.

Possible DFOUT settings are:

DFOUT=S Date variables are displayed with a 2-digit year component, and delimiters as determined by the
DTFORM parameter (yy-mm-dd).

DFOUT=I Date variables are displayed with a 4-digit year component and no delimiters (yyyymmdd).

By default, DFOUT=S applies. For either DFOUT setting, the sequence of the day, month and year components
in the date values is determined by the DTFORM parameter.

The lengths of the date fields are not affected by the DFOUT setting, as either date value representation fits into
an 8-byte field.

The DFOUT parameter can be set in the Natural parameter module/file, dynamically when Natural is invoked, or
with the system command GLOBALS. It is evaluated at runtime.

Example:

This example assumes that DTFORM=I applies.

 DEFINE DATA LOCAL
 1 #DATE (D) INIT <D’1997-12-31’>
 END-DEFINE
 ...
 WRITE #DATE /* Output if DFOUT=S is set ...: 97-12-31
 /* Output if DFOUT=I is set ...: 19971231
 WRITE #DATE (DF=L) /* Output (regardless of DFOUT): 1997-12-31
 ...

Copyright © Software AG 2003182

Processing of Date InformationDate Format for Output - DFOUT Parameter

Date Format for Stack - DFSTACK Parameter
The session/profile parameter DFSTACK only applies to date fields used in STACK, FETCH and RUN
statements for which no DF parameter has been specified.

The DFSTACK parameter determines the format in which the values of date variables are placed on the stack via
a STACK, RUN or FETCH statement.

Possible DFSTACK settings are:

DFSTACK=S Date variables are placed on the stack with a 2-digit year component, and delimiters as
determined by the profile DTFORM parameter (yy-mm-dd).

DFSTACK=C Same as DFSTACK=S. However, a change in the century will be intercepted at runtime.

DFSTACK=I Date variables are placed on the stack with a 4-digit year component and no delimiters
(yyyymmdd).

By default, DFSTACK=S applies. DFSTACK=S means that when a date value is placed on the stack, it is placed
there without the century information (which is lost). When the value is then read from the stack and placed into
another date variable, the century is either assumed to be the current one or determined by the setting of the
YSLW parameter (see below). This might lead to the century being different from that of the original date value;
however, Natural would not issue any error in this case.

DFSTACK=C works the same as DFSTACK=S in that a date value is placed on the stack without the century
information. However, if the value is read from the stack and the resulting century is different from that of the
original date value (either because of the YSLW parameter, or the original century not being the current one),
Natural issues a runtime error.

Note:
This runtime error is already issued at the time when the value is placed on the stack.

DFSTACK=I allows you to place a date value on the stack in a length of 8 bytes without losing the century
information.

The DFSTACK parameter can be set in the Natural parameter module/file, dynamically when Natural is
invoked, or with the system command GLOBALS. It is evaluated at runtime.

Example:

This example assumes that DTFORM=I and YSLW=0 apply.

 DEFINE DATA LOCAL
 1 #DATE (D) INIT <D’1997-12-31’>
 1 #ALPHA1(A8)
 1 #ALPHA2(A10)
 END-DEFINE
 ...
 STACK TOP DATA #DATE #DATE (DF=L)
 ...
 INPUT #ALPHA1 #ALPHA2
 ...
 /* Result if DFSTACK=S or =C is set: #ALPHA1 contains 97-12-31
 /* Result if DFSTACK=I is set: #ALPHA1 contains 19971231
 /* Result (regardless of DFSTACK) .: #ALPHA2 contains 1997-12-31
 ...

183Copyright © Software AG 2003

Date Format for Stack - DFSTACK ParameterProcessing of Date Information

Year Sliding Window - YSLW Parameter
The profile parameter YSLW allows you determine the century of a 2-digit year value.

The YSLW parameter can be set in the Natural parameter module/file or dynamically when Natural is invoked. It
is evaluated at runtime when an alphanumeric date value with a 2-digit year component is moved into a date
variable. This applies to data values which are:

used with the mathematical function VAL (field),
used with the IS(D) option in a logical condition,
read from the stack as input data, or
entered in an input field as input data.

The YSLW parameter determines the range of years covered by a so-called "year sliding window". The
sliding-window mechanism assumes a date with a 2-digit year to be within a "window" of 100 years. Within
these 100 years, every 2-digit year value can be uniquely related to a specific century.

With the YSLW parameter, you determine how many years in the past that 100-year range is to begin: The
YSLW value is subtracted from the current year to determine the first year of the window range.

Possible values of the YSLW parameter are 0 to 99. The default value is YSLW=0, which means that no
sliding-window mechanism is used; that is, a date with a 2-digit year is assumed to be in the current century.

Example 1:

If the current year is 1997 and you specify YSLW=40, the sliding window will cover the years 1957 to 2056. A
2-digit year value nn from 57 to 99 is interpreted accordingly as 19nn, while a 2-digit year value nn from 00 to
56 is interpreted as 20nn.

Copyright © Software AG 2003184

Processing of Date InformationYear Sliding Window - YSLW Parameter

Example 2:

If the current year is 1997 and you specify YSLW=20, the sliding window will cover the years 1977 to 2076. A
2-digit year value nn from 77 to 99 is interpreted accordingly as 19nn, while a 2-digit year value nn from 00 to
76 is interpreted as 20nn.

Combinations of DFSTACK and YSLW

The following examples illustrate the effects of using various combinations of the parameters DFSTACK and
YSLW.

Note:
All these examples assume that DTFORM=I applies.

Example 1:

This example assumes the current year to be 1997, and that the parameter settings DFSTACK=S (default) and
YSLW=20 apply.

 DEFINE DATA LOCAL
 1 #DATE1 (D) INIT <D’ 1956-12-31 ’>
 1 #DATE2 (D)
 END-DEFINE
 ...
 STACK TOP DATA #DATE1 /* century information is lost (year 56 is stacked)
 ...
 INPUT #DATE2 /* year sliding window determines 56 to be 2056
 ...
 /* Result: #DATE2 contains 2056-12-31

185Copyright © Software AG 2003

Combinations of DFSTACK and YSLWProcessing of Date Information

In this case, the year sliding window is not set appropriately, so that the century information is (inadvertently)
changed.

Example 2:

This example assumes the current year to be 1997, and that the parameter settings DFSTACK=S (default) and
YSLW=50 apply.

 DEFINE DATA LOCAL
 1 #DATE1 (D) INIT <D’ 1956-12-31 ’>
 1 #DATE2 (D)
 END-DEFINE
 ...
 STACK TOP DATA #DATE1 /* century information is lost (year 56 is stacked)
 ...
 INPUT #DATE2 /* year sliding window determines 56 to be 1956
 ...
 /* Result: #DATE2 contains 1956-12-31

In this case, the year sliding window is set appropriately, so that the original century information is correctly
restored.

Example 3:

This example assumes the current year to be 1997, and that the parameter settings DFSTACK=C and YSLW=0
(default) apply.

 DEFINE DATA LOCAL
 1 #DATE1 (D) INIT <D’ 2056-12-31 ’>
 1 #DATE2 (D)
 END-DEFINE
 ...
 STACK TOP DATA #DATE1 /* century information is lost (year 56 is stacked)
 ...
 INPUT #DATE2 /* 56 is assumed to be in current century -> 1956
 ...
 /* Result: RUNTIME ERROR (UNINTENDED CENTURY CHANGE)

In this case, the century information is (inadvertently) changed. However, this change is intercepted by the
DFSTACK=C setting.

Example 4:

This example assumes the current year to be 1997, and that the parameter settings DFSTACK=C and YSLW=20
(default) apply

 DEFINE DATA LOCAL
 1 #DATE1 (D) INIT <D’ 1956-12-31 ’>
 1 #DATE2 (D)
 END-DEFINE
 ...
 STACK TOP DATA #DATE1 /* century information is lost (year 56 is stacked)
 ...
 INPUT #DATE2 /* year sliding window determines 56 to be 2056
 ...
 /* Result: RUNTIME ERROR (UNINTENDED CENTURY CHANGE)

In this case, the century information is changed due to the year sliding window. However, this change is
intercepted by the DFSTACK=C setting.

Copyright © Software AG 2003186

Processing of Date InformationCombinations of DFSTACK and YSLW

Date Format for Default Page Title - DFTITLE Parameter
The session/profile parameter DFTITLE determines the format of the date in a default page title (as output with a
DISPLAY, WRITE or PRINT statement).

DFTITLE=S The date is output with a 2-digit year component and delimiters (yy-mm-dd).

DFTITLE=L The date is output with a 4-digit year component and delimiters (yyyy-mm-dd).

DFTITLE=I The date is output with a 4-digit year component and no delimiters (yyyymmdd).

For each of these output formats, the sequence of the day, month and year components, and the delimiter
characters used, are determined by the DTFORM parameter.

The DFTITLE parameter can be set in the Natural parameter module/file, dynamically when Natural is invoked,
or with the system command GLOBALS. It is evaluated at runtime.

Example:

This example assumes that DTFORM=I applies.

 WRITE ’HELLO’
 END
 /*
 /* Date in page title if DFTITLE=S is set ...: 98-10-31
 /* Date in page title if DFTITLE=L is set ...: 1998-10-31
 /* Date in page title if DFTITLE=I is set ...: 19981031

Note:
The DFTITLE parameter has no effect on a user-defined page title as specified with a WRITE TITLE statement.

187Copyright © Software AG 2003

Date Format for Default Page Title - DFTITLE ParameterProcessing of Date Information

Designing User Interfaces - Overview
The user interface of an application, that is, the way an application presents itself to the user, is a key
consideration when writing an application.

This document provides information on the various possibilities Natural offers for designing user interfaces that
are uniform in presentation and provide powerful mechanisms for user guidance and interaction.

When designing user interfaces, standards and standardization are key factors.

Using Natural, you can offer the end user common functionality across various hardware and operating systems.

This includes the general screen layout (information, data and message areas), function-key assignment and the
layout of windows.

This document covers the following topics:

Screen Design
Defining the general layout of screens.
Dialog Design
Designing user interfaces.

Copyright © Software AG 2003188

Designing User Interfaces - OverviewDesigning User Interfaces - Overview

Screen Design

Screen Design
This document provides options to define a general screen layout:

Control of Function-Key Lines - Terminal Command %Y
Control of the Message Line - Terminal Command %M
Assigning Colors to Fields - Terminal Command %=
Outlining - Terminal Command %D=B
Statistics Line/Infoline - Terminal Command %X
Windows
Standard/Dynamic Layout Maps
Multilingual User Interfaces
Skill-Sensitive User Interfaces

Control of Function-Key Lines - Terminal Command %Y
With the terminal command %Y you can define how and where the Natural function-key lines are to be
displayed.

Below is information on:

Format of Function-Key Lines
Positioning of Function-Key Lines
Cursor-Sensitivity

Format of Function-Key Lines

The following terminal commands are available for defining the format of function-key lines:

%YN

 The function-key lines are displayed in tabular Software AG format:

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Exit Canc

%YS

The function-key lines display the keys sequentially and only show those keys to which names have been
assigned (PF1=value,PF2=value,etc.):

 Command ===>
 PF1=Help,PF3=Exit,PF12=Canc

%YP

189Copyright © Software AG 2003

Screen Design<Untitled>

The function-key lines are displayed in PC-like format, that is, sequentially and only showing those keys to
which names have been assigned (F1=value,F2=value,etc.):

 Command ===>
 F1=Help,F3=Exit,F12=Canc

Other Display Options

Various other command options are available for function-key lines, such as:

single- and double-line display,
intensified display,
reverse video display,
color display.

For details on these options, see %Y - Control of PF-Key Lines in the Natural Terminal Commands
documentation.

Positioning of Function-Key Lines

%YB

The function-key lines are displayed at the bottom of the screen:

16:50:53 ***** NATURAL ***** 2002-12-18
User SAG - Main Menu - Library XYZ

 Function

 _ Development Functions
 _ Development Environment Settings
 _ Maintenance and Transfer Utilities
 _ Debugging and Monitoring Utilities
 _ Example Libraries
 _ Other Products
 _ Help
 _ Exit Natural Session

Command ===>
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Exit Canc

%YT

The function-key lines are displayed at the top of the screen:

Copyright © Software AG 2003190

<Untitled>Positioning of Function-Key Lines

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Exit Canc
 16:50:53 ***** NATURAL ***** 2002-12-18
 User SAG - Main Menu - Library XYZ

 Function

 _ Development Functions
 _ Development Environment Settings
 _ Maintenance and Transfer Utilities
 _ Debugging and Monitoring Utilities
 _ Example Libraries
 _ Other Products
 _ Help
 _ Exit Natural Session

 Command ===>

%Y nn

The function-key lines are displayed on line nn of the screen. In the example below the function-key line has
been set to line 10:

 16:50:53 ***** NATURAL ***** 2002-12-18
 User SAG - Main Menu - Library XYZ

 Function

 _ Development Functions
 _ Development Environment Settings
 _ Maintenance and Transfer Utilities
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Exit Canc
 - Debugging and Monitoring Utilities
 _ Example Libraries
 _ Other Products
 _ Help
 _ Exit Natural Session

 Command ===>

191Copyright © Software AG 2003

Positioning of Function-Key Lines<Untitled>

Cursor-Sensitivity

%YC

This command makes the function-key lines cursor-sensitive. This means that they act like an action bar on a PC
screen: you just move the cursor to the desired function-key number or name and press ENTER, and Natural
reacts as if the corresponding function key had been pressed.

To switch cursor-sensitivity off, you enter %YC again (toggle switch).

By using %YC in conjunction with tabular display format (%YN) and having only the function-key names
displayed (%YH), you can equip your applications with very comfortable action bar processing: the user merely
has to select a function name with the cursor and press ENTER, and the function is executed.

Control of the Message Line - Terminal Command %M
Various options of the terminal command %M are available for defining how and where the Natural message
line is to be displayed.

Below is information on:

Positioning the Message Line
Message Line Protection
Message Line Color

Positioning the Message Line

%MB

The message line is displayed at the bottom of the screen:

 16:50:53 ***** NATURAL ***** 2002-12-18
 User SAG - Main Menu - Library XYZ

 Function

 _ Development Functions
 _ Development Environment Settings
 _ Maintenance and Transfer Utilities
 _ Debugging and Monitoring Utilities
 _ Example Libraries
 _ Other Products
 _ Help
 _ Exit Natural Session

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Exit Canc
 Please enter a function.

Copyright © Software AG 2003192

<Untitled>Control of the Message Line - Terminal Command %M

%MT

The message line is displayed at the top of the screen:

 Please enter a function.
 16:50:53 ***** NATURAL ***** 2002-12-18
 User SAG - Main Menu - Library XYZ

 Function

 _ Development Functions
 _ Development Environment Settings
 _ Maintenance and Transfer Utilities
 _ Debugging and Monitoring Utilities
 _ Example Libraries
 _ Other Products
 _ Help
 _ Exit Natural Session

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Exit Canc

Other options for the positioning of the message line are described in %M - Control of Message Line in the
Natural Terminal Commands documentation.

Message Line Protection

%MP

The message line is switched from unprotected to protected mode or vice versa. In unprotected mode, the
message line can also be used for terminal input.

Message Line Color

%M= color-code

The message line is displayed in the specified color (for an explanation of color codes, see the session parameter
CD as described in the Natural Parameter Reference documentation).

Assigning Colors to Fields - Terminal Command %=
You can use the terminal command %= to assign colors to field attributes for programs that were originally not
written for color support. The command causes all fields/text defined with the specified attributes to be displayed
in the specified color.

If predefined color assignments are not suitable for your terminal type, you can use this command to override the
original assignments with new ones.

193Copyright © Software AG 2003

Assigning Colors to Fields - Terminal Command %=<Untitled>

You can also use the %= terminal command within Natural editors, for example to define color assignments
dynamically during map creation.

Codes Description

blank Clear color translate table.

F Newly defined colors are to override colors assigned by the program.

N Color attributes assigned by program are not to be modified.

O Output field.

M Modifiable field (output and input).

T Text constant.

B Blinking

C Italic

D Default

I Intensified

U Underlined

V Reverse video

BG Background

BL Blue

GR Green

NE Neutral

PI Pink

RE Red

TU Turquoise

YE Yellow

Example:

%=TI=RE,OB=YE

This example assigns the color red to all intensified text fields and yellow to all blinking output fields.

Outlining - Terminal Command %D=B
Outlining (boxing) is the capability to generate a line around certain fields when they are displayed on the
terminal screen. Drawing such "boxes" around fields is another method of showing the user the lengths of fields
and their positions on the screen.

Outlining is only available on certain types of terminals, usually those which also support the display of
double-byte character sets.

The terminal command %D=B is used to control outlining. For details on this command, see the relevant section
in the Natural Terminal Commands documentation.

Copyright © Software AG 2003194

<Untitled>Outlining - Terminal Command %D=B

Statistics Line/Infoline - Terminal Command %X
This terminal command controls the display of the Natural statistics line/infoline. The line can be used either as a
statistics line or as an infoline, but not both at the same time.

Below is information on:

Statistics Line
Infoline

Statistics Line

To turn the statistics line on/off, enter the terminal command %X (this is a toggle function). If you set the
statistics line on, you can see statistical information, such as:

the number of bytes transmitted to the screen during the previous screen operation,
the logical line size of the current page,
the physical line size of the window.

For full details regarding the statistics line, see the terminal command %X as described in the Natural Terminal
Commands documentation.

The example below shows the statistics line displayed at the bottom of the screen:

 > > + Program POS Lib SAG
 All +....1....+....2....+....3....+....4....+....5....+....6....+....7..
 0010 SET CONTROL ’XT’
 0020 SET CONTROL ’XI+’
 0030 DEFINE PRINTER (2) OUTPUT ’INFOLINE’
 0040 WRITE (2) ’EXECUTING’ *PROGRAM ’BY’ *INIT-USER
 0050 WRITE ’TEST OUTPUT’
 0070 END
 0080
 0090
 0100
 0110
 0120
 0130
 0140
 0150
 0160
 0170
 0180
 0190
 0200
 IO=264,AI =292,L=0 C= ,LS=80,P =23,PLS=80,PCS=24,FLD=82,CLS=1,ADA=0

Infoline

You can also use the statistics line as an infoline where status information can be displayed, for example, for
debugging purposes, or you can use it as a separator line (as defined by SAA standards).

To define the statistics line as an infoline, you use the terminal command %XI+.

Once you have activated the infoline with the above command, you can define the infoline as the output
destination for data with the DEFINE PRINTER statement as demonstrated in the example below:

195Copyright © Software AG 2003

Statistics Line/Infoline - Terminal Command %X<Untitled>

Example:

SET CONTROL ’XT’
SET CONTROL ’XI+’
DEFINE PRINTER (2) OUTPUT ’INFOLINE’
WRITE (2) ’EXECUTING’ *PROGRAM ’BY’ *INIT-USER
WRITE ’TEST OUTPUT’
END

When the above program is run, the status information is displayed in the infoline at the top of the output
display:

 EXECUTING POS BY SAG
 Page 1 2001-01-22 10:56:06

 TEST OUTPUT

For further details on the statistics line/infoline, see the terminal command %X as described in the Natural
Terminal Commands documentation.

Windows
Below is information on:

What is a Window?
DEFINE WINDOW Statement
INPUT WINDOW Statement

What is a Window?

A window is that segment of a logical page, built by a program, which is displayed on the terminal screen.

A logical page is the output area for Natural; in other words the logical page contains the current report/map
produced by the Natural program for display. This logical page may be larger than the physical screen.

There is always a window present, although you may not be aware of its existence. Unless specified differently
(by a DEFINE WINDOW statement), the size of the window is identical to the physical size of your terminal
screen.

You can manipulate a window in two ways:

You can control the size and position of the window on the physical screen.
You can control the position of the window on the logical page.

Positioning on the Physical Screen

The figure below illustrates the positioning of a window on the physical screen. Note that the same section of the
logical page is displayed in both cases, only the position of the window on the screen has changed.

Copyright © Software AG 2003196

<Untitled>Windows

Positioning on the Logical Page

The figure below illustrates the positioning of a window on the logical page.

When you change the position of the window on the logical page, the size and position of the window on the
physical screen will remain unchanged. In other words, the window is not moved over the page, but the page is
moved "underneath" the window.

197Copyright © Software AG 2003

What is a Window?<Untitled>

DEFINE WINDOW Statement

You use the DEFINE WINDOW statement to specify the size, position and attributes of a window on the
physical screen.

A DEFINE WINDOW statement does not activate a window; this is done with a SET WINDOW statement or
with the WINDOW clause of an INPUT statement.

Various options are available with the DEFINE WINDOW statement. These are described below in the context
of the example.

The following program defines a window on the physical screen.

Example:

 DEFINE DATA LOCAL
 1 COMMAND (A10)
 END-DEFINE
 *
 DEFINE WINDOW TEST
 SIZE 5*25
 BASE 5/40
 TITLE ’Sample Window’
 CONTROL WINDOW
 FRAMED POSITION SYMBOL BOT LEFT
 INPUT WINDOW=’TEST’
 WITH TEXT ’message line’
 COMMAND (AD=I) /
 ’dataline 1’ /
 ’dataline 2’ /
 ’dataline 3’ ’long data line’
 IF COMMAND = ’TEST2’
 FETCH ’TWIND2’
 ELSE
 REINPUT ’invalid command’
 END-IF
 END

The window-name identifies the window. The name may be up to 32 characters long. For a window name, the
same naming conventions apply as for user-defined variables. Here the name is TEST.

The window size is set with the SIZE option. Here the window is 5 lines high and 25 columns (positions) wide.

The position of the window is set by the BASE option. Here the top left-hand corner of the window is positioned
on line 5, column 40.

With the TITLE option, you can define a title that is to be displayed in the window frame (of course, only if you
have defined a frame for the window).

With the FRAMED option, you define that the window is to be framed.

This frame is then cursor-sensitive. Where applicable, you can page forward, backward, left or right within the
window by simply placing the cursor over the appropriate symbol (<, -, +, or >; see POSITION clause) and then
pressing ENTER. In other words, you are moving the logical page underneath the window on the physical
screen. If no symbols are displayed, you can page backward and forward within the window by placing the
cursor in the top frame line (for backward positioning) or bottom frame line (for forward positioning) and then
pressing ENTER.

Copyright © Software AG 2003198

<Untitled>DEFINE WINDOW Statement

With the POSITION clause of the FRAMED option, you define that information on the position of the window
on the logical page is to be displayed in the frame of the window. This applies only if the logical page is larger
than the window; if it is not, the POSITION clause will be ignored. The position information indicates in which
directions the logical page extends above, below, to the left and to the right of the current window.

If the POSITION clause is omitted, POSITION SYMBOL TOP RIGHT applies by default.

POSITION SYMBOL causes the position information to be displayed in form of symbols: "More: < - + >". The
information is displayed in the top and/or bottom frame line.

TOP/BOTTOM determines whether the position information is displayed in the top or bottom frame line.

LEFT/RIGHT determines whether the position information is displayed in the left or right part of the frame line.

You can define which characters are to be used for the frame with the terminal command %F=chv.

c The first character will be used for the four corners of the window frame.

h The second character will be used for the horizontal frame lines.

v The third character will be used for the vertical frame lines.

Example:

%F=+-!

The above command makes the window frame look like this:

 +------------------------+
 ! !
 ! !
 ! !
 ! !
 +------------------------+

INPUT WINDOW Statement

The INPUT WINDOW statement activates the window defined in the DEFINE WINDOW statement. In the
example, the window TEST is activated. Note that if you wish to output data in a window (for example, with a
WRITE statement), you use the SET WINDOW statement.

When the above program is run, the window is displayed with one input field COMMAND:

199Copyright © Software AG 2003

INPUT WINDOW Statement<Untitled>

 > r > + Program TWIND Lib SAG
 Bot +....1....+....2....+....3....+....4....+....5....+....6....+....7..
 0030 END-DEFINE
 0040 * +----Sample Window-----+
 0050 DEFINE WINDOW TEST ! message line !
 0060 SIZE 5*25 ! COMMAND !
 0070 BASE 5/40 ! dataline 1 !
 0080 TITLE ’Sample Window’ +More: + >---------+
 0090 CONTROL WINDOW
 0100 FRAMED POSITION SYMBOL BOT LEFT
 0110 INPUT WINDOW=’TEST’
 0120 WITH TEXT ’message line’
 0130 COMMAND (AD=I) /
 0140 ’dataline 1’ /
 0150 ’dataline 2’ /
 0160 ’dataline 3’ ’long data line’
 0170 IF COMMAND = ’TEST2’
 0180 FETCH ’TWIND2’
 0190 ELSE
 0200 REINPUT ’invalid command’
 0210 END-IF
 0220 END
 +....1....+....2....+....3....+....4....+....5....+... S 22 L 3

In the bottom frame line, the position information "More + >" indicates that there is more information on the
logical page than is displayed in the window.

To see the information that is further down on the logical page, you place the cursor in the bottom frame line on
the plus (+) sign and press ENTER.

The window is now moved downwards. Note that the text "long data line" does not fit in the window and is
consequently not fully visible.

 > r > + Program TWIND Lib SAG
 Bot +....1....+....2....+....3....+....4....+....5....+....6....+....7..
 0030 END-DEFINE
 0040 * +----Sample Window-----+
 0050 DEFINE WINDOW TEST ! invalid command !
 0060 SIZE 5*25 ! dataline 2 !
 0070 BASE 5/40 ! dataline 3 long data !
 0080 TITLE ’Sample Window’ +More: - >---------+
 0090 CONTROL WINDOW
 0100 FRAMED POSITION SYMBOL BOT LEFT
 0110 INPUT WINDOW=’TEST’
 0120 WITH TEXT ’message line’
 0130 COMMAND (AD=I) /
 0140 ’dataline 1’ /
 0150 ’dataline 2’ /
 0160 ’dataline 3’ ’long data line’
 0170 IF COMMAND = ’TEST2’
 0180 FETCH ’TWIND2’
 0190 ELSE
 0200 REINPUT ’invalid command’
 0210 END-IF
 0220 END
 +....1....+....2....+....3....+....4....+....5....+... S 22 L 3

Copyright © Software AG 2003200

<Untitled>INPUT WINDOW Statement

To see this hidden information to the right, you place the cursor in the bottom frame line on the ">" symbol and
press ENTER. The window is now moved to the right on the logical page and displays the previously invisible
word "line":

 > r > + Program TWIND Lib SAG
 Bot +....1....+....2....+....3....+....4....+....5....+....6....+....7..
 0030 END-DEFINE
 0040 * +----Sample Window-----+
 0050 DEFINE WINDOW TEST ! invalid command !
 0060 SIZE 5*25 ! !
 0070 BASE 5/40 ! line !
 0080 TITLE ’Sample Window’ +More: < - ---------+
 0090 CONTROL WINDOW
 0100 FRAMED POSITION SYMBOL BOT LEFT

Message and Function-Key Lines

With the CONTROL clause, you determine whether the function-key lines, the message line and the statistics
line are displayed in the window or on the full physical screen.

CONTROL WINDOW displays the lines inside the window.
CONTROL SCREEN displays the lines on the full physical screen outside the window.

If you omit the CONTROL clause, CONTROL WINDOW applies by default.

Multiple Windows

You can, of course, open multiple windows. However, only one Natural window is active at any one time, that
is, the most recent window. Any previous windows may still be visible on the screen, but are no longer active
and are ignored by Natural. You may enter input only in the most recent window. If there is not enough space to
enter input, the window size must be adjusted first.

When TEST2 is entered in the COMMAND field, the second program TWIND2 is executed.

Program TWIND2:

 DEFINE DATA LOCAL
 1 COMMAND (A10)
 END-DEFINE
 *
 DEFINE WINDOW TEST2
 SIZE 5*30
 BASE 15/40
 TITLE ’ANOTHER WINDOW’
 CONTROL SCREEN
 FRAMED POSITION SYMBOL BOT LEFT
 INPUT WINDOW=’TEST2’
 WITH TEXT ’message line’
 COMMAND (AD=U) /
 ’dataline 1’ /
 ’dataline 2’ /
 ’dataline 3’ ’long data line’
 IF COMMAND = ’TEST’
 FETCH ’TWIND’
 ELSE
 REINPUT ’invalid command’
 END-IF
 END

201Copyright © Software AG 2003

INPUT WINDOW Statement<Untitled>

A second window is opened. The other window is still visible, but it is inactive.

 message line
 > r > + Program TWIND Lib SAG
 Bot +....1....+....2....+....3....+....4....+....5....+....6....+....7..
 0030 END-DEFINE
 0040 * +----Sample Window-----+
 0050 DEFINE WINDOW TEST ! invalid command ! Inactive
 0060 SIZE 5*25 ! COMMAND TEST2 ! Window
 0070 BASE 5/40 ! dataline 1 !
 0080 TITLE ’Sample Window’ +More: + >---------+
 0090 CONTROL WINDOW
 0100 FRAMED POSITION SYMBOL BOT LEFT
 0110 INPUT WINDOW=’TEST’
 0120 WITH TEXT ’message line’
 0130 COMMAND (AD=I) /
 0140 ’dataline 1’ / +------ANOTHER WINDOW-------+ Currently
 0150 ’dataline 2’ / ! COMMAND ! Active
 0160 ’dataline 3’ ’long data line’ ! dataline 1 ! Window
 0170 IF COMMAND = ’TEST2’ ! dataline 2 !
 0180 FETCH ’TWIND2’ +More: + >-----------------+
 0190 ELSE
 0200 REINPUT ’invalid command’
 0210 END-IF
 0220 END
 +....1....+....2....+....3....+....4....+....5....+... S 22 L 3

Note that for the new window the message line is now displayed on the full physical screen (at the top) and not
in the window. This was defined by the CONTROL SCREEN clause in the TWIND2 program.

For further details on the statements DEFINE WINDOW, INPUT WINDOW and SET WINDOW, see the
corresponding descriptions in the Natural Statements documentation.

Standard/Dynamic Layout Maps

Standard Layout Maps

As described in the section Tutorial - Using the Map Editor, a standard layout can be defined in the map editor.
This layout guarantees a uniform appearance for all maps that reference it throughout the application.

When a map that references a standard layout is initialized, the standard layout becomes a fixed part of the map.
This means that if this standard layout is modified, all affected maps must be re-cataloged before the changes
take effect.

Dynamic Layout Maps

In contrast to a standard layout, a dynamic layout does not become a fixed part of a map that references it, rather
it is executed at runtime.

This means that if you define the layout map as "dynamic" on the Define Map Settings For Map screen in the
map editor (see the example below), any modifications to the layout map are also carried out on all maps that
reference it. The maps need not be re-cataloged.

Copyright © Software AG 2003202

<Untitled>Standard/Dynamic Layout Maps

 08:46:18 Define Map Settings for MAP 2001-01-22

 Delimiters Format Context
 ----------------- --------------------------- --------------------------
 Cls Att CD Del Page Size 23 Device Check ________
 T D BLANK Line Size 79 WRITE Statement _
 T I ? Column Shift ... 0 (0/1) INPUT Statement X
 A D _ Layout STAN1___ Help ____________________
 A I) dynamic Y (Y/N) as field default N (Y/N)
 A N ª Zero Print N (Y/N)
 M D & Case Default ... UC (UC/LC)
 M I : Manual Skip N (Y/N) Automatic Rule Rank 1
 O D + Decimal Char Profile Name SYSPROF
 O I (Standard Keys .. Y (Y/N)
 Justification .. L (L/R) Filler Characters
 Print Mode __ ------------------------
 Optional, Partial _
 Control Var ________ Required, Partial _
 Optional, Complete ... _
 Apply changes only to new fields? N (Y/N) Required, Complete ... _

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Exit Let

For further details on layout maps, see Map Editor in the Natural Editors documentation.

Multilingual User Interfaces
Using Natural, you can create multilingual applications for international use.

Maps, helproutines, error messages, programs, subprograms and copycodes can be defined in up to 60 different
languages (including languages with double-byte character sets).

Below is information on:

Language Codes
Defining the Language of a Natural Object
Defining the User Language
Referencing Multilingual Objects
Programs
Error Messages
Edit Masks for Date and Time Fields

Language Codes

In Natural, each language has a language code (from 1 to 60). The table below is an extract from the full table of
language codes.

203Copyright © Software AG 2003

Multilingual User Interfaces<Untitled>

Language Code Language Map Code in Object Names

1 English 1

2 German 2

3 French 3

4 Spanish 4

5 Italian 5

6 Dutch 6

7 Turkish 7

8 Danish 8

9 Norwegian 9

10 Albanian A

11 Portuguese B

The language code (left column) is the code that is contained in the system variable *LANGUAGE. This code is
used by Natural internally. It is the code you use to define the user language (see Defining the User Language
below). The code you use to identify the language of a Natural object is the map code in the right-hand column
of the table.

Example:

The language code for Portuguese is "11".
The code you use when cataloging a Portuguese Natural object is "B".

For the full table of language codes, see the system variable *LANGUAGE as described in the Natural System
Variables documentation.

Defining the Language of a Natural Object

To define the language of a Natural object (map, helproutine, program, subprogram or copycode), you add the
corresponding map code to the object name. Apart from the map code, the name of the object must be identical
for all languages.

In the example below, a map has been created in English and in German. To identify the languages of the maps,
the map code that corresponds to the respective language has been included in the map name.

Example of Map Names for a Multilingual Application:

DEMO1 = English map (map code 1)
DEMO2 = German map (map code 2)

Defining Languages with Alphabetical Map Codes

Map codes are in the range 1-9, A-Z or a-y. The alphabetical map codes require special handling.

Normally, it is not possible to catalog an object with a lower-case letter in the name - all characters are
automatically converted into capitals.

This is however necessary, if for example you wish to define an object for Kanji (Japanese) which has the
language code 59 and the map code "x".

Copyright © Software AG 2003204

<Untitled>Defining the Language of a Natural Object

To catalog such an object, you first set the correct language code (here 59) using the terminal command %L=nn,
where nn is the language code.

You then catalog the object using the ampersand (&) character instead of the actual map code in the object name.
So to have a Japanese version of the map DEMO, you stow the map under the name DEMO&.

If you now look at the list of Natural objects, you will see that the map is correctly listed as DEMOx.

Objects with language codes 1-9 and upper case A-Z can be cataloged directly without the use of the ampersand
(&) notation.

In the example list below, you can see the three maps DEMO1, DEMO2 and DEMOx. To delete the map
DEMOx, you use the same method as when creating it, that is, you set the correct language with the terminal
command %L=59 and then confirm the deletion with the & notation (DEMO&).

 08:41:14 ***** NATURAL LIST COMMAND ***** 2001-01-25
 User SAG LIST * * Library SAG

 Cmd Name Type S/C SM Vers Level User-ID Date Time
 --- -------- ----------- --- -- ---- ----- -------- -------- --------
 __ COM3 Program S/C S 2.2 0002 SAG 92-01-21 14:34:39
 __ CUR Program +--------- DELETE ---------+ 92-01-22 09:37:02
 __ CURS Map ! ! 92-01-22 09:37:41
 __ D Program ! Please confirm deletion ! 92-01-21 14:13:14
 __ DARL Program ! with name DEMOx ! 91-06-03 12:08:30
 __ DARL1 Local ! DEMO&___ ! 91-06-03 12:03:52
 __ DAV Program +--------------------------+ 92-01-29 09:07:52
 de DEMOx Map S/C S 2.2 0002 SAG 92-02-25 08:41:04
 __ DEMO1 Map S/C S 2.2 0002 SAG 92-01-22 08:38:32
 __ DEMO2 Map S/C S 2.2 0002 SAG 92-01-22 08:07:32
 __ DOWNCOM Program S S 2.2 0001 SAG 91-08-12 14:01:10
 __ DOWNCOMR Program S S 2.2 0001 SAG 91-08-12 14:01:32
 __ DOWNCOM2 Program S S 2.2 0001 SAG 91-08-15 13:02:20
 __ DOWNDIR Program S S 2.2 0001 SAG 91-08-16 08:03:56
 From ________ (New start value) 0

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Exit -- - + Canc

Defining the User Language

You define the language to be used per user - as defined in the system variable *LANGUAGE - with the profile
parameter ULANG (which is described in the Natural Parameter Reference documentation) or with the terminal
command %L=nn (where nn is the language code).

Referencing Multilingual Objects

To reference multilingual objects in a program, you use the ampersand (&) character in the name of the object.

The program below uses the maps DEMO1 and DEMO2. The ampersand (&) character at the end of the map
name stands for the map code and indicates that the map with the current language as defined in the
*LANGUAGE system variable is to be used.

Example:

205Copyright © Software AG 2003

Defining the User Language<Untitled>

 DEFINE DATA LOCAL
 1 PERSONNEL VIEW OF EMPLOYEES
 2 NAME (A20)
 2 PERSONNEL-ID (A8)
 1 CAR VIEW OF VEHICLES
 2 REG-NUM (A15)
 1 #CODE (N1)
 END-DEFINE
 *
 INPUT USING MAP ’DEMO&’ /* <--- INVOKE MAP WITH CURRENT LANGUAGE CODE
 ...

When this program is run, the English map (DEMO1) is displayed. This is because the current value of
*LANGUAGE is "1" = English.

 MAP DEMO1

 SAMPLE MAP

 Please select a function!

 1.) Employee information

 2.) Vehicle information

 Enter code here: _

In the example below, the language code has been switched to "2" = German with the terminal command %L=2.

When the program is now run, the German map (DEMO2) is displayed.

 BEISPIEL-MAP

 Bitte wählen Sie eine Funktion!

 1.) Mitarbeiterdaten

 2.) Fahrzeugdaten

 Code hier eingeben: _

Copyright © Software AG 2003206

<Untitled>Referencing Multilingual Objects

Programs

For some applications it may be useful to define multilingual programs. For example, a standard invoicing
program, might use different subprograms to handle various tax aspects, depending on the country where the
invoice is to be written.

Multilingual programs are defined with the same technique as described above for maps.

Error Messages

Using the Natural utility SYSERR, you can translate Natural error messages into up to 60 languages, and also
define your own error messages.

Which message language a user sees, depends on the *LANGUAGE system variable.

For further information on error messages, see the Natural SYSERR Utility documentation.

Edit Masks for Date and Time Fields

The language used for date and time fields defined with edit masks also depends on the system variable
*LANGUAGE.

For details on edit masks, see the session parameter EM as described in the Natural Parameter Reference
documentation.

Skill-Sensitive User Interfaces
Users with varying levels of skill may wish to have different maps (of varying detail) while using the same
application.

If your application is not for international use by users speaking different languages, you can use the techniques
for multilingual maps to define maps of varying detail.

For example, you could define language code 1 as corresponding to the skill of the beginner, and language code
2 as corresponding to the skill of the advanced user. This simple but effective technique is illustrated below.

The following map (PERS1) includes instructions for the end user on how to select a function from the menu.
The information is very detailed. The name of the map contains the map code 1:

207Copyright © Software AG 2003

Skill-Sensitive User Interfaces<Untitled>

 MAP PERS1

 SAMPLE MAP

 Please select a function

 1.) Employee information _

 2.) Vehicle information _

 Enter code: _

 To select a function, do one of the following:

 - place the cursor on the input field next to desired function and press ENTER
 - mark the input field next to desired function with an X and press ENTER
 - enter the desired function code (1 or 2) in the ’Enter code’ field and press
 ENTER

The same map, but without the detailed instructions is saved under the same name, but with map code 2.

 MAP PERS2

 SAMPLE MAP

 Please select a function

 1.) Employee information _

 2.) Vehicle information _

 Enter code: _

In the example above, the map with the detailed instructions is output, if the ULANG profile parameter has the
value 1, the map without the instructions if the value is 2.

Further details on ULANG are described in Profile Parameters in the Natural Parameter Reference
documentation.

Copyright © Software AG 2003208

<Untitled>Skill-Sensitive User Interfaces

Dialog Design
This document tells you how you can design user interfaces that make user interaction with the application
simple and flexible:

Field-Sensitive Processing
*CURS-FIELD and POS(field-name)
Simplifying Programming
System Function POS
Line-Sensitive Processing
System Variable *CURS-LINE
Column-Sensitive Processing
System Variable *CURS-COL
Processing Based on Function Keys
System Variable *PF-KEY
Processing Based on Function-Key Names
System Variable *PF-NAME
Processing Data Outside an Active Window
System Variable *COM
Copying Data from a Screen
Terminal Commands %CS and %CC
Statements REINPUT/REINPUT FULL
Object-Oriented Processing
Natural Command Processor

Field-Sensitive Processing

*CURS-FIELD and POS(field-name)

Using the system variable *CURS-FIELD together with the system function POS(field-name), you can define
processing based on the field where the cursor is positioned at the time the user presses ENTER.

*CURS-FIELD contains the internal identification of the field where the cursor is currently positioned; it cannot
be used by itself, but only in conjunction with POS(field-name).

You can use *CURS-FIELD and POS(field-name), for example, to enable a user to select a function simply by
placing the cursor on a specific field and pressing ENTER.

The example below illustrates such an application:

Example:

 DEFINE DATA LOCAL
 1 #EMP (A1)
 1 #CAR (A1)
 1 #CODE (N1)
 END-DEFINE
 *
 INPUT USING MAP ’CURS’
 *
 DECIDE FOR FIRST CONDITION
 WHEN *CURS-FIELD = POS(#EMP) OR #EMP = ’X’ OR #CODE = 1
 FETCH ’LISTEMP’
 WHEN *CURS-FIELD = POS(#CAR) OR #CAR = ’X’ OR #CODE = 2

209Copyright © Software AG 2003

Dialog DesignDialog Design

 FETCH ’LISTCAR’
 WHEN NONE
 REINPUT ’PLEASE MAKE A VALID SELECTION’
 END-DECIDE

 END

 SAMPLE MAP

 Please select a function

 1.) Employee information _
 2.) Vehicle information _ Cursor positioned
 on field

 Enter code: _

 To select a function, do one of the following:

 - place the cursor on the input field next to desired function and press ENTER
 - mark the input field next to desired function with an X and press ENTER
 - enter the desired function code (1 or 2) in the ’Enter code’ field and press
 ENTER

If the user places the cursor on the input field (#EMP) next to Employee information, and presses ENTER, the
program LISTEMP displays a list of employee names:

 Page 1 2001-01-22 09:39:32

 NAME

 ABELLAN
 ACHIESON
 ADAM
 ADKINSON
 ADKINSON
 ADKINSON
 ADKINSON
 ADKINSON
 ADKINSON
 ADKINSON
 ADKINSON
 AECKERLE
 AFANASSIEV
 AFANASSIEV
 AHL
 AKROYD

Simplifying Programming

System Function POS

The Natural system function POS(field-name) contains the internal identification of the field whose name is
specified with the system function.

Copyright © Software AG 2003210

Dialog DesignSimplifying Programming

POS(field-name) may be used to identify a specific field, regardless of its position in a map. This means that the
sequence and number of fields in a map may be changed, but POS(field-name) will still uniquely identify the
same field. With this, for example, you need only a single REINPUT statement to make the field to be MARKed
dependent on the program logic.

Note:
The values of *CURS-FIELD and POS(field-name) serve for internal identification of the fields only. They
cannot be used for arithmetical operations.

Example:

 ...
 DECIDE ON FIRST VALUE OF ...
 VALUE ...
 COMPUTE #FIELDX = POS(FIELD1)
 VALUE ...
 COMPUTE #FIELDX = POS(FIELD2)
 ...
 END-DECIDE
 ...
 REINPUT ... MARK #FIELDX
 ...

Full details on *CURS-FIELD and POS(field-name) are described in the Natural System Variables and System
Functions documention.

Line-Sensitive Processing

System Variable *CURS-LINE

Using the system variable *CURS-LINE, you can make processing dependent on the line where the cursor is
positioned at the time the user presses ENTER.

Using this variable, you can make user-friendly menus. With the appropriate programming, the user merely has
to place the cursor on the line of the desired menu option and press ENTER to execute the option.

The cursor position is defined within the current active window, regardless of its physical placement on the
screen.

Note:
The message line, function-key lines and statistics line/infoline are not counted as data lines on the screen.

The example below demonstrates line-sensitive processing using the *CURS-LINE system variable. When the
user presses ENTER on the map, the program checks if the cursor is positioned on line 8 of the screen which
contains the option "Employee information". If this is the case, the program that lists the names of employees
LISTEMP is executed.

Example:

 DEFINE DATA LOCAL
 1 #EMP (A1)
 1 #CAR (A1)
 1 #CODE (N1)
 END-DEFINE
 *
 INPUT USING MAP ’CURS’
 *
 DECIDE FOR FIRST CONDITION
 WHEN *CURS-LINE = 8

211Copyright © Software AG 2003

Line-Sensitive ProcessingDialog Design

 FETCH ’LISTEMP’
 WHEN NONE
 REINPUT ’PLACE CURSOR ON LINE OF OPTION YOU WISH TO SELECT’
 END-DECIDE
 END

 Company Information

 Please select a function

 [] 1.) Employee information

 2.) Vehicle information

 Place the cursor on the line of the option you wish to select and press
 ENTER

The user places the cursor indicated by [] on the line of the desired option and presses ENTER and the
corresponding program is executed.

Column-Sensitive Processing

System Variable *CURS-COL

The system variable *CURS-COL can be used in a similar way to *CURS-LINE described above. With
*CURS-COL you can make processing dependent on the column where the cursor is positioned on the screen.

Processing Based on Function Keys

System Variable *PF-KEY

Frequently you may wish to make processing dependent on the function key a user presses.

This is achieved with the statement SET KEY, the system variable *PF-KEY and a modification of the default
map settings (Standard Keys = "Y").

The SET KEY statement assigns functions to function keys during program execution. The system variable
*PF-KEY contains the identification of the last function key the user pressed.

The example below illustrates the use of SET KEY in combination with *PF-KEY.

Example:

Copyright © Software AG 2003212

Dialog DesignColumn-Sensitive Processing

 ...
 SET KEY PF1
 *
 NPUT USING MAP ’DEMO&’
 IF *PF-KEY = ’PF1’
 WRITE ’Help is currently not active’
 END-IF
 ...

The SET KEY statement activates PF1 as a function key.

The IF statement defines what action is to be taken when the user presses PF1. The system variable *PF-KEY is
checked for its current content; if it contains PF1, the corresponding action is taken.

Further details regarding the statement SET KEY and the system variable *PF-KEY are described in the Natural
Statements and the Natural System Variables documentation respectively.

Processing Based on Function-Key Names

System Variable *PF-NAME

When defining processing based on function keys, further comfort can be added by using the system variable
*PF-NAME. With this variable you can make processing dependent on the name of a function, not on a specific
key.

The variable *PF-NAME contains the name of the last function key the user pressed (that is, the name as
assigned to the key with the NAMED clause of the SET KEY statement).

For example, if you wish to allow users to invoke help by pressing either PF3 or PF12, you assign the same
name (in the example below: INFO) to both keys. When the user presses either one of the keys, the processing
defined in the IF statement is performed.

Example:

 ...
 SET KEY PF3 NAMED ’INFO’
 PF12 NAMED ’INFO’
 INPUT USING MAP ’DEMO&’
 IF *PF-NAME = ’INFO’
 WRITE ’Help is currently not active’
 END-IF
 ...

The function names defined with NAMED appear in the function-key lines:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 INFO INFO

Processing Data Outside an Active Window
Below is information on:

System Variable *COM
Example Usage of *COM
Positioning the Cursor to *COM - %T* Terminal Command

213Copyright © Software AG 2003

Processing Based on Function-Key NamesDialog Design

System Variable *COM

As stated above, only one window is active at any one time. This normally means that input is only possible
within that particular window.

Using the *COM system variable, which can be regarded as a communication area, it is possible to enter data
outside the current window.

The prerequisite is that a map contains *COM as a modifiable field. This field is then available for the user to
enter data when a window is currently on the screen. Further processing can then be made dependent on the
content of *COM.

This allows you to implement user interfaces as already used, for example, by Con-nect, Software AG’s office
system, where a user can always enter data in the command line, even when a window with its own input fields
is active.

Note that *COM is only cleared when the Natural session is ended.

Example Usage of *COM

In the example below, the program ADD performs a simple addition using the input data from a map. In this
map, *COM has been defined as a modifiable field (at the bottom of the map) with the length specified in the AL
field of the Extended Field Editing . The result of the calculation is displayed in a window. Although this
window offers no possibility for input, the user can still use the *COM field in the map outside the window.

Program ADD:

 DEFINE DATA LOCAL
 1 #VALUE1 (N4)
 1 #VALUE2 (N4)
 1 #SUM3 (N8)
 END-DEFINE
 *
 DEFINE WINDOW EMP
 SIZE 8*17
 BASE 10/2
 TITLE ’Total of Add’
 CONTROL SCREEN
 FRAMED POSITION SYMBOL BOT LEFT
 *
 INPUT USING MAP ’WINDOW’
 *
 COMPUTE #SUM3 = #VALUE1 + #VALUE2
 *
 SET WINDOW ’EMP’
 INPUT (AD=O) / ’Value 1 +’ /
 ’Value 2 =’ //
 ’ ’ #SUM3
 *
 IF *COM = ’M’
 FETCH ’MULTIPLY’ #VALUE1 #VALUE2
 END-IF
 END

Copyright © Software AG 2003214

Dialog DesignSystem Variable *COM

 Map to Demonstrate Windows with *COM

 CALCULATOR

 Enter values you wish to calculate

 Value 1: 12__
 Value 2: 12__
 +-Total of Add-+
 ! !
 ! Value 1 + !
 ! Value 2 = !
 ! !
 ! 24 !
 ! !
 +--------------+

 Next line is input field (*COM) for input outside the window:

In this example, by entering the value "M", the user initiates a multiplication function; the two values from the
input map are multiplied and the result is displayed in a second window:

 Map to Demonstrate Windows with *COM

 CALCULATOR

 Enter values you wish to calculate

 Value 1: 12__
 Value 2: 12__
 +-Total of Add-+ +--------------+
 ! ! ! !
 ! Value 1 + ! ! Value 1 x !
 ! Value 2 = ! ! Value 2 = !
 ! ! ! !
 ! 24 ! ! 144 !
 ! ! ! !
 +--------------+ +--------------+

 Next line is input field (*COM) for input outside the window:
 M

Positioning the Cursor to *COM - the %T* Terminal Command

Normally, when a window is active and the window contains no input fields (AD=M or AD=A), the cursor is
placed in the top left corner of the window.

With the terminal command %T*, you can position the cursor to a *COM system variable outside the window
when the active window contains no input fields.

By using %T* again, you can switch back to standard cursor placement.

215Copyright © Software AG 2003

Positioning the Cursor to *COM - the %T* Terminal CommandDialog Design

Example:

 ...
 INPUT USING MAP ’WINDOW’
 *
 COMPUTE #SUM3 = #VALUE1 + #VALUE2
 *
 SET CONTROL ’T*’
 SET WINDOW ’EMP’
 INPUT (AD=O) / ’Value 1 +’ /
 ’Value 2 =’ //
 ’ ’ #SUM3
 ...

Copying Data from a Screen
Below is information on:

Terminal Commands %CS and %CC
Selecting a Line from Report Output for Further Processing

Terminal Commands %CS and %CC

With these terminal commands, you can copy parts of a screen into the Natural stack (%CS) or into the system
variable *COM (%CC). The protected data from a specific screen line are copied field by field.

The full options of these terminal commands are described in the Natural Terminal Commands documentation.

Once copied to the stack or *COM, the data are available for further processing. Using these commands, you can
make user-friendly interfaces as in the example below.

Selecting a Line from Report Output for Further Processing

In the following example, the program COM1 lists all employee names from Abellan to Alestia.

Program COM1:

 DEFINE DATA LOCAL
 1 EMP VIEW OF EMPLOYEES
 2 NAME(A20)
 2 MIDDLE-NAME (A20)
 2 PERSONNEL-ID (A8)
 END-DEFINE
 *
 READ EMP BY NAME STARTING FROM ’ABELLAN’ THRU ’ALESTIA’
 DISPLAY NAME
 END-READ
 FETCH ’COM2’
 END

Copyright © Software AG 2003216

Dialog DesignCopying Data from a Screen

 Page 1 2001-01-22 08:21:22

 NAME

 ABELLAN
 ACHIESON
 ADAM
 ADKINSON
 ADKINSON
 ADKINSON
 ADKINSON
 ADKINSON
 ADKINSON
 ADKINSON
 ADKINSON
 AECKERLE
 AFANASSIEV
 AFANASSIEV
 AHL
 AKROYD
 ALEMAN
 ALESTIA
 MORE

Control is now passed to the program COM2.

Program COM2:

 DEFINE DATA LOCAL
 1 EMP VIEW OF EMPLOYEES
 2 NAME(A20)
 2 MIDDLE-NAME (A20)
 2 PERSONNEL-ID (A8)
 1 SELECTNAME (A20)
 END-DEFINE
 *
 SET KEY PF5 = ’%CCC’
 *
 INPUT NO ERASE ’SELECT FIELD WITH CURSOR AND PRESS PF5’
 * MOVE *COM TO SELECTNAME
 FIND EMP WITH NAME = SELECTNAME
 DISPLAY NAME PERSONNEL-ID
 END-FIND
 END

In this program, the terminal command %CCC is assigned to PF5. The terminal command copies all protected
data from the line where the cursor is positioned to the system variable *COM. This information is then available
for further processing. This further processing is defined in the program lines shown in boldface.

The user can now position the cursor on the name that interests him; when he/she now presses PF5, further
employee information is supplied.

217Copyright © Software AG 2003

Selecting a Line from Report Output for Further ProcessingDialog Design

SELECT FIELD WITH CURSOR AND PRESS PF5 2001-01-22 08:20:22

 NAME

 ABELLAN
 ACHIESON
 ADAM Cursor positioned on name for which more information is required
 ADKINSON
 ADKINSON
 ADKINSON
 ADKINSON
 ADKINSON
 ADKINSON
 ADKINSON
 ADKINSON
 AECKERLE
 AFANASSIEV
 AFANASSIEV
 AHL
 AKROYD
 ALEMAN
 ALESTIA

In this case, the personnel ID of the selected employee is displayed:

 Page 1 2001-01-22 08:20:30

 NAME PERSONNEL
 ID
 -------------------- ---------

 ADAM 50005800

Statements REINPUT/REINPUT FULL
If you wish to return to and re-execute an INPUT statement, you use the REINPUT statement. It is generally
used to display a message indicating that the data input as a result of the previous INPUT statement were invalid.

If you specify the FULL option in a REINPUT statement, the corresponding INPUT statement will be
re-executed fully:

With an ordinary REINPUT statement (without FULL option), the contents of variables that were changed
between the INPUT and REINPUT statement will not be displayed; that is, all variables on the screen will
show then contents they had when the INPUT statement was originally executed.
With a REINPUT FULL statement, all changes that have been made after the initial execution of the
INPUT statement will be applied to the INPUT statement when it is re-executed; that is, all variables on the
screen contain the values they had when the REINPUT statement was executed.
If you wish to position the cursor to a specified field, you can use the MARK option, and to position to a
particular position within a specified field, you use the MARK POSITION option.

The example below illustrates the use of REINPUT FULL with MARK POSITION.

Example:

Copyright © Software AG 2003218

Dialog DesignStatements REINPUT/REINPUT FULL

 DEFINE DATA LOCAL
 1 #A (A10)
 1 #B (N4)
 1 #C (N4)
 END-DEFINE
 *
 INPUT (AD=M) #A #B #C
 IF #A = ’ ’
 COMPUTE #B = #B + #C
 RESET #C
 REINPUT FULL ’Enter a value’ MARK POSITION 5 IN *#A
 END-IF
 END

The user enters 3 in field #B and 3 in field #C and presses ENTER.

 #A #B 3 #C 3

The program requires field #A to be non-blank. The REINPUT FULL statement with MARK POSITION 5 IN
*#A returns the input screen; the now modified variable #B contains the value 6 (after the COMPUTE
calculation has been performed). The cursor is positioned to the 5th position in field #A ready for new input.

Enter name of field
 #A _ #B 6 #C 0

 Cursor positioned to 5th position in field

Enter a value

This is the screen that would be returned by the same statement, without the FULL option. Note that the
variables #B and #C have been reset to their status at the time of execution of the INPUT statement (each field
contains the value 3).

 #A _ #B 3 #C 3

Object-Oriented Processing

Natural Command Processor

The Natural Command Processor is used to define and control navigation within an application.

The Natural Command Processor consists of two parts: a development part and a runtime part .

The development part is the utility SYSNCP. With this utility, you define commands and the actions to be
performed in response to the execution of these commands. From your definitions, SYSNCP generates
decision tables which determine what happens when a user enters a command.
The run-time part is the statement PROCESS COMMAND. This statement is used to invoke the
Command Processor within a Natural program. In the statement you specify the name of the SYSNCP table
to be used to handle the data input by a user at that point.

219Copyright © Software AG 2003

Object-Oriented ProcessingDialog Design

For further information regarding the Natural Command Processor, see the Natural SYSNCP Utility
documentation and the statement PROCESS COMMAND as described in the Natural Statements documentation.

Copyright © Software AG 2003220

Dialog DesignNatural Command Processor

Keywords and Reserved Words
This document contains a list of all keywords and words that are reserved in the Natural programming language.

To avoid possible naming conflicts, you are strongly recommended not to
use these keywords or reserved words or components thereof as names for
your data or procedures.

The following topics are covered:

Performing a Keyword Check
Alphabetical List of Keywords and Reserved Words

Performing a Keyword Check
To check that your code is free of keywords, you can use one of the following check facilities:

Profile parameter KC (available only on UNIX and Windows)
KCHECK option of the CMPO profile parameter or NTCMPO parameter macro (available only on
mainframe platforms)
KCHECK option of the COMPOPT system command (available only on mainframe platforms)

By default, no keyword check is performed.

Alphabetical List of Keywords and Reserved Words
The following list is an overview of Natural keywords and reserved words and is for general information only. In
case of doubt, use the keyword check function of the compiler.

[A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z]

Symbols and Special Characters

.

<

<>

<=

+

+V

*

**

*APPLIC-ID

*APPLIC-NAME

*AVER

*COM

221Copyright © Software AG 2003

Keywords and Reserved WordsKeywords and Reserved Words

*CONVID

*COUNT

*COUNTER

*CPU-TIME

*CURRENT-UNIT

*CURS-COL

*CURS-FIELD

*CURS-LINE

*CURSOR

*DATA

*DAT4D

*DAT4E

*DAT4I

*DAT4J

*DAT4U

*DATD

*DATE

*DATG

*DATI

*DATJ

*DATN

*DATU

*DATX

*DEVICE

*DIALOG-ID

*ERROR

*ERROR-LINE

*ERROR-NR

*ERROR-TA

*ETID

*EVENT

*GROUP

*HARDCOPY

*HARDWARE

*HOSTNAME

*IN

Copyright © Software AG 2003222

Keywords and Reserved WordsSymbols and Special Characters

*INIT-ID

*INIT-PROGRAM

*INIT-USER

*IR

*ISN

*LANGUAGE

*LBOUND

*LEADING

*LENGTH

*LEVEL

*LIBRARY-ID

*LINE-COUNT

*LINESIZE

*LOG-LS

*LOG-PS

*MACHINE-CLASS

*MAX

*MAXVAL

*MIN

*MINVAL

*NATVERS

*NAVER

*NET-USER

*NCOUNT

*NMIN

*NUMBER

*OCC

*OCCURRENCE

*OI

*OLD

*OPSYS

*OS

*OSVERS

*OUT

*OUTIN

*PAGE-NUMBER

223Copyright © Software AG 2003

Symbols and Special CharactersKeywords and Reserved Words

*PAGESIZE

*PARM-USER

*PARSE-COL

*PARSE-LEVEL

*PARSE-NAMESPACE-URI

*PARSE-ROW

*PARSE-TYPE

*PATCH-LEVEL

*PF-KEY

*PF-NAME

*PID

*PROGRAM

*ROWCOUNT

*SCREEN-IO

*SERVER-TYPE

*STARTUP

*STEPLIB

*SUBROUTINE

*SUM

*TCV

*THIS-OBJECT

*TIMD

*TIME

*TIMESTMP

*TIMN

*TIMX

*TPSYS

*TOTAL

*TRAILING

*TRANSLATE

*TRIM

*TYPE

*UBOUND

*UI

*USER

*USER-NAME

Copyright © Software AG 2003224

Keywords and Reserved WordsSymbols and Special Characters

*WINDOW-LS

*WINDOW-POS

*WINDOW-PS

*WINMGR

*WINMGRVERS

^<

^>

^=

-

/

>

>=

?

:=

=

- A -

A

A-AVER

A-MAX

A-MIN

A-NAVER

A-NCOUNT

A-NMIN

A-SUM

ABS

ABSOLUTE

ACCEPT

ACTION

ACTIVATION

AD

ADD

ADHOC

AFTER

AL

ALARM

225Copyright © Software AG 2003

- A -Keywords and Reserved Words

ALL

ALPHA

ALPHABETICALLY

AND

AND TRANSLATE

ANY

APPL

APPLICATION

APPLIC-ID

APPLIC-NAME

ARRAY

AS

ASC

ASCENDING

ASSIGN

ASSIGNING

ASYNC

AT

AT BREAK

AT END

AT START

AT TOP

ATN

ATT

ATTRIBUTES

AUTH

AUTHORIZATION

AUTO

AVER

AVG

- B -

Copyright © Software AG 2003226

Keywords and Reserved Words- B -

BACKOUT

BACKWARD

BASE

BATCH

BEFORE

BETWEEN

BLOCK

BLOCKE

BLOCKED

BOT

BOTTOM

BREAK

BROWSE

BUT

BUT NOT

BX

BY

- C -

C

CABINET

CABINETS

CALL

CALLDBPROC

CALLING

CALLNAT

CAP

CAPTIONED

CASE

CAT

CATALL

CATALOG

CATLG

CC

CD

CDID

227Copyright © Software AG 2003

- C -Keywords and Reserved Words

CF

CHAR

CHECK

CHILD

CIPH

CIPHER

CLASS

CLEAR

CLOSE

CLOSE CONVERSATION

CLOSE LOOP

CLOSE PC

CLOSE PRINTER

CLOSE WORK

CLR

CMS

COALESCE

COM

COMMAND

COMMIT

COMPOSE

COMPRESS

COMPUTE

CONCAT

CONDITION

CONST

CONSTANT

CONTEXT

CONTROL

CONVERSATION

COPIES

COPY

COS

COUNT

COUPLED

CR

Copyright © Software AG 2003228

Keywords and Reserved Words- C -

CREATE

CREATE OBJECT

CURRENT

CURS-FIELD

CURSOR

CV

- D -

DATA

DATAAREA

DATE

DAY

DAYS

DC

DEBUG

DECIDE

DECIMAL

DEFINE

DEFINE CLASS

DEFINE DATA

DEFINE SERVER

DEFINE VIEW

DELETE

DELIMITED

DELIMITER

DELIMITERS

DESC

DESCENDING

DEST

DESTINATION

DIALOG

DIALOG-ID

DIGITS

DIRECTION

DISABLED

DISP

229Copyright © Software AG 2003

- D -Keywords and Reserved Words

DISPLAY

DISPLAY FORMATTED

DISTINCT

DIVIDE

DLOGOFF

DLOGON

DNATIVE

DNRET

DO

DOCUMENT

DOEND

DOWNLOAD

DRAW

DU

DUMP

DY

DYNAMIC

- E -

E

EDIT

EDITED

EDT

EJ

EJECT

ELSE

EM

END

END-ACTION

END-ALL

END-BEFORE

END-BLOCK

END-BREAK

END-BROWSE

END-CLASS

END-DECIDE

Copyright © Software AG 2003230

Keywords and Reserved Words- E -

END-DEFINE

END-ENDDATA

END-ENDFILE

END-ENDPAGE

END-ERROR

END-FILE

END-FIND

END-FOR

END-FUNCTION

END-HISTOGRAM

ENDHOC

END-IF

END-INTERFACE

END-JOIN

END-LOOP

END-METHOD

END-NOREC

END-PARAMETERS

END-PARSE

END-PROCESS

END-PROPERTY

END-PROTOTYPE

END-READ

END-REPEAT

END-RESULT

END-SELECT

END-SERVER

END-SORT

END-START

END-SUBROUTINE

END-TOPPAGE

END-UNITE

END-VALUE

END-VALUES

END-VIEW

END-WORK

231Copyright © Software AG 2003

- E -Keywords and Reserved Words

ENDHOC

ENDING

ENDING AT

ENTER

ENTIRE

ENTR

EQ

EQUAL

EQUAL TO

ERASE

ERROR

ERROR-LINE

ERROR-TA

ERRORS

ES

ESCAPE

ETID

EVEN

EVENT

EVERY

EX

EXAMINE

EXCEPT

EXEC

EXECUTE

EXISTS

EXIT

EXP

EXPAND

EXPORT

EXTERNAL

EXTRACTING

- F -

Copyright © Software AG 2003232

Keywords and Reserved Words- F -

F

FALSE

FC

FETCH

FIELD

FIELDS

FILE

FILES

FILL

FILLER

FIN

FINAL

FIND

FIRST

FL

FLOAT

FOR

FORM

FORMAT

FORMATTED

FORMATTING

FORMS

FORWARD

FOUND

FRAC

FRAMED

FROM

FS

FULL

FUNCTION

FUNCTIONS

- G -

233Copyright © Software AG 2003

- G -Keywords and Reserved Words

G

GC

GDA

GE

GEN

GENERATED

GET

GFID

GIVE

GIVING

GLOBAL

GLOBALS

GRAPHICS

GREATER

GREATER EQUAL

GREATER THAN

GROUP

GROUP BY

GT

GUI

- H -

Copyright © Software AG 2003234

Keywords and Reserved Words- H -

H

HANDLE

HAVING

HC

HD

HE

HEADER

HELLO

HELP

HEX

HISTOGRAM

HOLD

HORIZ

HORIZONTALLY

HOUR

HOURS

HW

- I -

IA

IC

ID

IDENTICAL

IF

IGNORE

IM

IMMEDIATE

IMPORT

IN

INC

INCCONT

INCDIC

INCDIR

INCLUDE

INCLUDED

INCLUDING

235Copyright © Software AG 2003

- I -Keywords and Reserved Words

INCMAC

INDEPENDENT

INDEX

INDEXED

INDICATOR

INDX

INIT

INITIAL

INNER

INPL

INPUT

INSERT INTO

INT

INTEGER

INTERCEPTED

INTERFACE

INTERFACED

INTERMEDIATE

INTERSECT

INTO

INVERTED

INVESTIGATE

IO

IP

IS

ISN

ISPF

- J -

JOIN

JUST

JUSTIFIED

- K -

Copyright © Software AG 2003236

Keywords and Reserved Words- J -

KD

KEY

KEYS

- L -

237Copyright © Software AG 2003

- L -Keywords and Reserved Words

L

LANGUAGE

LAST

LC

LE

LEAVE

LEAVING

LEFT

LENGTH

LESS

LESS EQUAL

LESS THAN

LEVEL

LIB

LIBPW

LIBRARY

LIBRARY-PASSWORD

LIKE

LIMIT

LINDICATOR

LINES

LIST

LISTED

LOCAL

LOG

LOG-LS

LOG-PS

LOGICAL

LOGOFF

LOGON

LOOP

LOWER

LOWER CASE

LS

LT

Copyright © Software AG 2003238

Keywords and Reserved Words- L -

- M -

M

MACROAREA

MAIL

MAINMENU

MAP

MARK

MASK

MAX

MC

MCG

MESSAGES

METHOD

MGID

MICRO

MICROSECOND

MIN

MINUTE

MIX

MODIFIED

MODULE

MODULES

MONTH

MORE

MOVE

MOVING

MP

MS

MT

MULTI-FETCH

MULTIPLY

- N -

NAME

NAMED

239Copyright © Software AG 2003

- M -Keywords and Reserved Words

NAMESPACE

NATIVE

NAVER

NC

NCOUNT

NE

NET

NEWPAGE

NL

NMIN

NO

NO ERASE

NO PARAMETER

NO PARMS

NODE

NOHDR

NONE

NORMALIZE

NOT

NOT <

NOT >

NOT =

NOT EQ

NOT GT

NOT LT

NOTEQUAL

NOTIT

NOTITLE

NPC

NPLCMD1

NPLCMD2

NPLCMD3

NULL

NULL-HANDLE

NUMBER

NUMERIC

Copyright © Software AG 2003240

Keywords and Reserved Words- N -

- O -

O

OBJECT

OBTAIN

OCCURRENCES

OF

OFF

OFFSET

OLD

ON

ON ACTION

ON ERROR

ONCE

OPEN

OPEN CONVERSATION

OPTIMIZE

OPTIONAL

OPTIONS

OR

OR =

ORDER

OR EQ

OR EQUAL

OR EQUAL TO

OR=

ORDER BY

OUTER

OUTPUT

OVFLW

- P -

PAGE

PAGES

PARAMETER

PARAMETERS

241Copyright © Software AG 2003

- O -Keywords and Reserved Words

PARENT

PARSE

PASS

PASSW

PASSWORD

PATH

PATTERN

PA1

PA2

PA3

PC

PD

PEN

PERFORM

PF-NAME

PFn (n = 1 to 9)

PFnn (nn = 10 to 99)

PGDN

PGUP

PGM

PHYSICAL

PLOT

PM

POLICY

POS

POSITION

PR

PREFIX

PREV

PREVIOUS

PRIMARY

PRINT

PRINTER

PRIORITY

PRIVATE

PROCESS

Copyright © Software AG 2003242

Keywords and Reserved Words- P -

PROCESSING

PROFILE

PROGRAM

PROGRAMS

PROPERTY

PROTOTYPE

PRTY

PS

PT

PURGE

PW

- Q -

QUARTER

- R -

R

RD

READ

READONLY

REC

RECORD

RECORDS

RECURSIVELY

REDEFINE

REDUCE

REFERENCED

REFERENCING

REINPUT

REJECT

REL

RELATION

RELATIONSHIP

RELEASE

REMAINDER

RENAME

243Copyright © Software AG 2003

- Q -Keywords and Reserved Words

RENUM

RENUMBER

REPEAT

REPEATED

REPLACE

REPORT

REPORTER

REPOSITION

REQUEST

REQUIRED

RESET

RESETTING

RESIZE

RESPONSE

RESTORE

RESULT

RET

RETAIN

RETAINED

RETRY

RETURN

RETURNS

REVERSED

RG

RIGHT

ROLLBACK

ROUNDED

ROUTINE

ROWS

RULEVAR

RUN

RUNMODE

- S -

SA

SAME

Copyright © Software AG 2003244

Keywords and Reserved Words- S -

SAVE

SCAN

SCR

SCRATCH

SCREEN

SEARCH

SECOND

SELECT

SELECTION

SEND

SEND METHOD

SEPARATE

SEQUENCE

SERVER

SET

SET TIME

SETS

SETTIME

SETUP

SF

SG

SGN

SHORT

SHOW

SIN

SINGLE

SIZE

SKIP

SL

SM

SOME

SORT

SORTED

SORTKEY

SOUND

SOURCE

245Copyright © Software AG 2003

- S -Keywords and Reserved Words

SPACE

SPECIFIED

SQL

SQLID

SQRT

STACK

START

STARTING

STARTING FROM

STARTUP

STATEMENT

STATUS

STEP

STEPLIB

STOP

STORE

STOW

SUBPROGRAM

SUBPROGRAMS

SUBROUTINE

SUBSTR

SUBSTRING

SUBTRACT

SUM

SUPPRESS

SUPPRESSED

SUSPEND

SYMBOL

SYNC

SYSTEM

- T -

Copyright © Software AG 2003246

Keywords and Reserved Words- T -

T

TAN

TC

TECH

TERMINATE

TEST

TEXT

TEXTAREA

TEXTVARIABLE

THAN

THEM

THEN

THRU

TIME

TIME-OUT

TIMES

TIMESTAMP

TIMEZONE

TITLE

TO

TO VARIABLE

TO VARIABLES

TOP

TOTAL

TP

TR

TRAILER

TRANSACTION

TRANSFER

TRANSLATE

TREQ

TRUE

TS

TSO

TYPE

247Copyright © Software AG 2003

- T -Keywords and Reserved Words

- U -

U

UC

UNCAT

UNCATALOG

UNCATLG

UNDERLINED

UNDLIN

UNION

UNIQUE

UNITE

UNKNOWN

UNTIL

UPDATE

UPLOAD

UPPER

UPPER CASE

USED

USER

USER-NAME

USING

- V -

Copyright © Software AG 2003248

Keywords and Reserved Words- U -

VAL

VALUE

VALUES

VARGRAPHIC

VARIABLE

VARIABLES

VERIFY

VERSIONS

VERT

VERTICALLY

VIA

VIEW

VRS

- W -

WASTE PAPER

WH

WHEN

WHERE

WHILE

WINDOW

WITH

WORK

WRITE

- X -

X

XML

XREF

- Y -

YEAR

249Copyright © Software AG 2003

- W -Keywords and Reserved Words

- Z -

ZD

ZP

Copyright © Software AG 2003250

Keywords and Reserved Words- Z -

Natural X
This document covers the following topics:

Introduction to NaturalX
Developing NaturalX Applications
Distributing NaturalX Applications (Windows platforms only)

251Copyright © Software AG 2003

Natural XNatural X

Introduction to NaturalX
This section covers the following topics:

Why NaturalX?
Programming Techniques

Why NaturalX?
Software applications that are based on component architecture offer many advantages over traditional designs.
These include the following:

Faster development. Programmers can build applications faster by assembling software from prebuilt
components.
Reduced development costs. Having a common set of interfaces for programs means less work integrating
the components into complete solutions.
Improved flexibility. It is easier to customize software for different departments within a company by just
changing some of the components that constitute the application.
Reduced maintenance costs. In the case of an upgrade, it is often sufficient to change some of the
components instead of having to modify the entire application.
Easier distribution. Components encapsulate data structures and functionality in distributable units.

Using NaturalX you can create component-based applications.

On Windows platforms you can use NaturalX in conjunction with DCOM. This enables you to:

allow your components to be accessed by other components,
execute these components on local and/or remote servers,
access components written in a variety of programming languages across process and machine boundaries
from within Natural programs,
provide your existing Natural applications with (quasi) standardized interfaces.

The following scenario illustrates how a company could exploit these advantages. A company introduces a new
sales management system that is based on an application design using components. There are numerous data
entry components in the application, one for each sales point. But all of these sales point use a common tax
calculation component that runs on a server. If the tax legislation is changed, then only the tax component has to
be updated instead of changing the data entry components at each site. In addition, the life of the programmers is
made easier because they do not have to worry about network programming and the integration of components
that are written in different languages.

On Mainframe and UNIX platforms you can also use NaturalX to apply a component-based programming style.
However, on these platforms the components cannot be distributed and can only run in a local Natural session.

Programming Techniques
This section covers the following topics:

Object-Based Programming
Defining Classes
Defining Interfaces
Interface Inheritance

Copyright © Software AG 2003252

Introduction to NaturalXIntroduction to NaturalX

Object-Based Programming

NaturalX follows an object-based programming approach. Characteristic for this approach is the encapsulation of
data structures with the corresponding functionality into classes. Encapsulation is a good basis for easy
distribution. Because there are (quasi) standards for the interoperation of software components on the basis of
object models, an object-based approach is also a good basis for making software components interoperable
across program, machine and programming language boundaries.

Defining Classes

In an object-based application, each function is considered to be a service that is provided by an object. Each
object belongs to a class. Clients use the services either to perform a business task or to build even more complex
services and to provide these to other clients. Hence the basic step in creating an application with NaturalX is to
define the classes that form the application. In many cases, the classes simply correspond to the real things that
the application in question deals with, for example, bank accounts, aircraft, shipments etc. There is a wide range
of good literature about object-oriented design, and a number of well-proven methods can be used to identify the
classes in a given business.

The process of defining a class can be broadly broken down into the following steps:

Create a Natural module of type class.
Specify the name of the class using the DEFINE CLASS statement. This name will be used by the clients to
create objects of that class.
Use the OBJECT clause of the DEFINE DATA statement to define how an object of the class will look
internally. Create a local data area that describes the layout of the object with the data area editor, and
assign this data area in the OBJECT clause.

These steps are described in more detail in the section Developing Object-Based Natural Applications.

Defining Interfaces

In order to be useful to clients, a class must provide services, which it does through interfaces. An interface is a
collection of methods and properties. A method is a function that an object of the class can perform when
requested by a client. A property is an attribute of an object that a client can retrieve or change. A client accesses
the services by creating an object of the class and using the methods and properties of its interfaces.

The process of defining an interface can be broadly broken down into the following steps:

Use the INTERFACE clause to specify an interface name.
Define the properties of the interface with PROPERTY definitions.
Define the methods of the interface with METHOD definitions.

These steps are described in more detail in the section Developing Object-Based Natural Applications.

Simple classes only have one interface, but a class may have more than one interface. This possibility can be
used to group methods and properties into one interface that belong to the same functional aspect of the class and
to define different interfaces to handle other functional aspects. For example, an Employee class could have an
interface Administration that contains all of the methods and properties of the administrative aspects of an
employee. This interface could contain the properties Salary and Department and the method
TransferToDepartment. Another interface Qualifications could contain the qualification aspects of an employee.

Interface Inheritance

Defining several interfaces for a class is the first step towards using interface inheritance, which is a more
advanced method of designing classes and interfaces. This makes it possible to reuse the same interface
definition in different classes. Assume that there is a class Manager, which is to be treated in the same way as

253Copyright © Software AG 2003

Object-Based ProgrammingIntroduction to NaturalX

the class Employee with respect to qualification, but which is to be handled differently as far as administration is
concerned. This can be achieved by having the Qualification interface in both classes. This has the advantage
that a client that uses the Qualification interface on a given object does not have to check explicitly whether the
object represents an Employee or a Manager. It can simply use the same methods and properties without having
to know of what class the object is. The properties or methods can even be implemented in a different way in
both classes provided they are presented through the same interface definition.

The process of using interface inheritance can be broadly broken down into the following steps:

Use the INTERFACE statements to define one or more interfaces in a copycode instead of defining them
directly in the class.
The METHOD and PROPERTY definitions in the INTERFACE statement do not need to contain the IS
clause. At this point, you just define the external appearance of the interface without assigning
implementations to the methods and properties.
Use the INTERFACE clause to include the copycode with its interface definition in each class that will
implement the interface.
Use the METHOD and PROPERTY statements to assign implementations to the methods and properties of
the interface in each class that will implement the interface.

Copyright © Software AG 2003254

Introduction to NaturalXInterface Inheritance

Developing NaturalX Applications
This section tells you how to develop an application by defining and using classes.

It covers the following topics:

Using the Class Builder
Defining Classes
Using Classes and Objects

Using the Class Builder
On Windows platforms, Natural provides the Class Builder as the tool to develop Natural classes. The Class
Builder shows a Natural class in a structured hierarchical order and allows the user to manage the class and its
components efficiently. If you use the Class Builder, no knowledge or only a basic knowledge of the syntax
elements described in the section Defining Classes is required.

Using Natural Single Point of Development (SPoD), you can use the Class Builder also to develop Classes on
Mainframe and UNIX platforms. If you do not use SpoD, you develop classes on these platforms using the
Natural program editor. In this case, you should know the syntax of class definition described in the section
Defining Classes.

Defining Classes
When you define a class, you must create a Natural class module, within which you create a DEFINE CLASS
statement. Using the DEFINE CLASS statement, you assign the class an externally usable name and define its
interfaces, methods and properties. You can also assign an object data area to the class, which describes the
layout of an instance of the class. On Windows platforms the DEFINE CLASS statement is also used to supply a
global unique identifier to those classes that are to be registered as COM classes.

This section covers the following topics:

Creating a Natural Class Module
Specifying a Class
Defining an Interface
Assigning an Object Data Variable to a Property
Assigning a Subprogram to a Method
Implementing Methods

Creating a Natural Class Module

 To create a Natural class module

Create a Natural object of type Class.

Specifying a Class

The DEFINE CLASS statement defines the name of the class, the interfaces the class supports and the structure
of its objects. For classes that are to be registered as COM classes, it specifies also the Globally Unique ID of the
class and its Activation Policy.

255Copyright © Software AG 2003

Developing NaturalX ApplicationsDeveloping NaturalX Applications

 To specify a class

Use the DEFINE CLASS statement as described in the Natural Statements documentation.

Defining an Interface

Each interface of a class is specified with an INTERFACE statement inside the class definition. An
INTERFACE statement specifies the name of the interface and a number of properties and methods. For classes
that are to be registered as COM classes, it specifies also the Globally Unique ID of the interface.

A class can have one or several interfaces. For each interface, one INTERFACE statement is coded in the class
definition. Each INTERFACE statement contains one or several PROPERTY and METHOD clauses. Usually
the properties and methods contained in one interface are related from either a technical or a business point of
view.

The PROPERTY clause defines the name of a property and assigns a variable from the object data area to the
property. This variable is used to store the value of the property.

The METHOD clause defines the name of a method and assigns a subprogram to the method. This subprogram
is used to implement the method.

 To define an interface

Use the INTERFACE statement as described in the Natural Statements documentation.

Assigning an Object Data Variable to a Property

The PROPERTY statement is used only when several classes are to implement the same interface in different
ways. In this case, the classes share the same interface definition and include it from a Natural Copycode. The
PROPERTY statement is then used to assign a variable from the object data area to a property, outside the
interface definition. Like the PROPERTY clause, the PROPERTY statement defines the name of a property and
assigns a variable from the object data area to the property. This variable is used to store the value of the
property.

 To assign an object data variable to a property

Use the PROPERTY statement as described in the Natural Statements documentation.

Assigning a Subprogram to a Method

The METHOD statement is used only when several classes are to implement the same interface in different
ways. In this case, the classes share the same interface definition and include it from a Natural Copycode. The
METHOD statement is then used to assign a subprogram to the method, outside the interface definition. Like the
METHOD clause, the METHOD statement defines the name of a method and assigns a subprogram to the
method. This subprogram is used to implement the method.

 To assign a subprogram to a method

Use the METHOD statement as described in the Natural Statements documentation.

Implementing Methods

A method is implemented as a Natural subprogram in the following general form:

Copyright © Software AG 2003256

Developing NaturalX ApplicationsDefining an Interface

For information on the DEFINE DATA statement see the Natural Statements Manual.

All clauses of the DEFINE DATA statement are optional.

It is recommended that you use data areas instead of inline data definitions to ensure data consistency.

If a PARAMETER clause is specified, the method can have parameters and/or a return value.

Parameters that are marked ’BY VALUE’ in the parameter data area are input parameters of the method.

Parameters that are not marked ’BY VALUE’ are passed by reference and are input/output parameters. This is
the default.

The first parameter that is marked ’BY VALUE RESULT’ is returned as the return value for the method. If more
than one parameter is marked in this way, the others will be treated as input/output parameters.

Parameters that are marked ’OPTIONAL’ are available with Version 4.1.2 and all subsequent releases. Optional
parameters need not to be specified when the method is called. They can be left unspecified by using the nX
notation in the SEND METHOD statement.

To make sure that the method subprogram accepts exactly the same parameters as specified in the corresponding
METHOD statement in the class definition, use a parameter data area instead of inline data definitions. Use the
same parameter data area as in the corresponding METHOD statement.

To give the method subprogram access to the object data structure, the OBJECT clause can be specified. To
make sure that the method subprogram can access the object data correctly, use a local data area instead of inline
data definitions. Use the same local data area as specified in the OBJECT clause of the DEFINE CLASS
statement.

The GLOBAL, LOCAL and INDEPENDENT clauses can be used as in any other Natural program.

While technically possible, it is usually not meaningful to use a CONTEXT clause in a method subprogram.

The following example retrieves data about a given person from a table. The search key is passed as a ’BY
VALUE’ parameter. The resulting data is returned through ’BY REFERENCE’ parameters (’BY REFERENCE’
is the default definition). The return value of the method is defined by the specification ’BY VALUE RESULT’.

257Copyright © Software AG 2003

Implementing MethodsDeveloping NaturalX Applications

Using Classes and Objects
Objects created in a local Natural session can be accessed by other modules in the same Natural session. On
Windows platforms, objects created in other processes or on remote machines can be accessed via DCOM. In
both cases the rules for accessing and using classes and their objects are the same. The statement CREATE
OBJECT is used to create an object (also known as an instance) of a given class. To reference objects in Natural
programs, object handles have to be defined in the DEFINE DATA statement. Methods of an object are invoked
with the statement SEND METHOD. Objects can have properties, which can be accessed using the normal
assignment syntax.

Copyright © Software AG 2003258

Developing NaturalX ApplicationsUsing Classes and Objects

Note:
In order to use a NaturalX class via DCOM, the class must first be registered.

This section covers the following topics:

Defining Object Handles
Creating an Instance of a Class
Invoking a Particular Method of an Object
Accessing Properties
Sample Application

Defining Object Handles

To reference objects in Natural programs, object handles have to be defined as follows in the DEFINE DATA
statement:

Example

DEFINE DATA LOCAL
 1 #MYOBJ1 HANDLE OF OBJECT
 1 #MYOBJ2 (1:5) HANDLE OF OBJECT
 END-DEFINE

Creating an Instance of a Class

 To create an instance of a class

Use the CREATE OBJECT statement as described in the Natural Statements documentation.

Invoking a Particular Method of an Object

 To invoke a particular method of an object

Use the SEND METHOD statement as described in the Natural Statements documentation.

Accessing Properties

Properties can be accessed using the ASSIGN (or COMPUTE) statement as follows:

259Copyright © Software AG 2003

Defining Object HandlesDeveloping NaturalX Applications

Object Handle - operand1

Operand1 must be defined as an object handle and identifies the object whose property is to be accessed. The
object must already exist.

operand2

As operand2, you specify an operand whose format must be data transfer-compatible to the format of the
property. Please refer to the data transfer compatibility rules in the Natural Reference documentation for further
information.

If the object is to be accessed via DCOM, you must also take into account the rules for data type conversion
which are outlined in the section Data Type Conversions.

property-name

The name of a property of the object.

If the property name conforms to Natural identifier syntax, it can be specified as follows

create object #o1 of class "Employee"
 #age := #o1.Age

If the property name does not conform to Natural identifier syntax, it must be enclosed in angle brackets:

create object #o1 of class "Employee"
 #salary := #o1.<<%Salary>>

The property name can also be qualified with an interface name. This is necessary if the object has more than
one interface containing a property with the same name. In this case, the qualified property name must be
enclosed in angle brackets:

create object #o1 of class "Employee"
 #age := #o1.<<PersonalData.Age>>

Example

define data
 local
 1 #i (i2)
 1 #o handle of object
 1 #p (5) handle of object
 1 #q (5) handle of object
 1 #salary (p7.2)
 1 #history (p7.2/1:10)
 end-define
 * ...
 * Code omitted for brevity .
 * ...
 * Set/Read the Salary property of the object #o.
 #o.Salary := #salary
 #salary := #o.Salary
 * Set/Read the Salary property of
 * the second object of the array #p.
 #p.Salary(2) := #salary
 #salary := #p.Salary(2)
 *
 * Set/Read the SalaryHistory property of the object #o.
 #o.SalaryHistory := #history(1:10)
 #history(1:10) := #o.SalaryHistory
 * Set/Read the SalaryHistory property of

Copyright © Software AG 2003260

Developing NaturalX ApplicationsAccessing Properties

 * the second object of the array #p.
 #p.SalaryHistory(2) := #history(1:10)
 #history(1:10) := #p.SalaryHistory(2)
 *
 * Set the Salary property of each object in #p to the same value.
 #p.Salary(*) := #salary
 * Set the SalaryHistory property of each object in #p
 * to the same value.
 #p.SalaryHistory(*) := #history(1:10)
 *
 * Set the Salary property of each object in #p to the value
 * of the Salary property of the corresponding object in #q.
 #p.Salary(*) := #q.Salary(*)
 * Set the SalaryHistory property of each object in #p to the value
 * of the SalaryHistory property of the corresponding object in #q.
 #p.SalaryHistory(*) := #q.SalaryHistory(*)
 *
 end

In order to use arrays of object handles and properties that have arrays as values correctly, it is important to
know the following:

A property of an occurrence of an array of object handles is addressed with the following index notation:

#p.Salary(2) := #salary

A property that has an array as value is always accessed as a whole. Therefore no index notation is necessary
with the property name:

#o.SalaryHistory := #history(1:10)

A property of an occurrence of an array of object handles which has an array as value is therefore addressed as
follows:

 #p.SalaryHistory(2) := #history(1:10)

Sample Application

An example application is provided in the libraries SYSEXCOM and SYSEXCOC. See the A-README
members in these libraries for information about how to run the example.

261Copyright © Software AG 2003

Sample ApplicationDeveloping NaturalX Applications

Distributing NaturalX Applications
On Windows platforms, an application consisting of NaturalX classes can be distributed across several processes
and machines using DCOM.

This section covers the following topics:

General
Globally Unique Identifiers (GUIDs)

General
Using NaturalX, you can make Natural classes and their services available to local and remote clients, thus
creating distributed applications. Local clients are processes that run on the same machine as a given NaturalX
server, and remote clients are processes that run on a different machine.

In order to distribute applications, a widely used distributed object technology is used - the Microsoft Distributed
Component Object Model (DCOM). When you register a Natural class to DCOM, its interfaces are presented to
clients in a quasi-standardized fashion as dynamic COM interfaces, which are also known as dispatch interfaces.
These interfaces can be easily addressed by many programming languages including Visual Basic, Java, C++
and, of course, Natural.

There are several points that must be taken into consideration when organizing the distribution of a NaturalX
application. Each of these points is discussed in more detail in this chapter.

Determine whether each class should be internal, external or local (see the section Internal, External and
Local Classes).
Globally unique IDs (GUIDs) must be assigned to the internal and external classes and their interfaces in
order to be able to address them uniquely in the network (see the section Globally Unique Idenitfiers
(GUIDs).
You can define the activation policy for each class in order to control the conditions under which DCOM
activates it (see section Activation Policies).
In order to organize classes to applications, you can define NaturalX servers and assign the classes to them
(see the section NaturalX Servers).
Classes must be registered to make them known to DCOM (see section Registration).
You can configure an application in order to further control its behavior (see the sections Configuration
Overview and DCOM Configuration on Windows 2000/XP).

Internal, External and Local Classes

It is important to distinguish between classes for internal use, classes for external use and those for local use
only.

Internal Classes

Objects (instances) of internal classes can only be created in the client process.

Internal classes have the following features:

Access to client session-dependent resources such as files and system variables.
Can run within the client transaction.
Can be debugged using the Natural Debugger (local debugging).

Copyright © Software AG 2003262

Distributing NaturalX ApplicationsDistributing NaturalX Applications

External Classes

Objects (instances) of external classes can be created in a different process or on a different machine. If the client
process is simultaneously a server for the class, they can also be created in the client process.

External classes have the following features:

No access to client session-dependent resources such as stacks, files and system variables.
Do not run within the client transaction.
Can be used by remote nodes.
Can be used by various clients using a variety of languages such as Natural, Java, Visual Basic, C/C++, etc.
Can be debugged with the Natural debugger (remote debugging).

Local Classes

Local classes are classes, which are executed in local execution mode. Natural executes a class locally (within
the Natural session) if it is either not registered or if DCOM is not available.

Local classes have the following features:

Can be used even if DCOM is not available.
Need not be registered with DCOM.
Cannot be used from outside the client process.

Globally Unique Identifiers - GUIDs
DCOM uses global unique identifiers (GUIDs) - 128-bit integers that are virtually guaranteed to be unique
throughout the world - to identify every interface and every class. This helps to ensure that server components
can be located and to prevent clients connecting to an object accidentally.

If a class is to be registered to DCOM, every interface defined in a Natural class and the class itself must be
associated with such a globally unique ID.

Once a globally unique ID has been assigned to an interface or a class, the ID must never be changed.

Using the Class Builder

On Windows platforms, Natural provides the Class Builder as the tool to develop Natural classes. The Class
Builder automatically assigns a GUID to every class and interface.

263Copyright © Software AG 2003

Globally Unique Identifiers - GUIDsDistributing NaturalX Applications

	Cover Page
	page 2

	Table of Contents
	Programming Guide - Overview
	Reporting Mode or Structured Mode
	General Information
	Reporting Mode
	Structured Mode

	Setting the Programming Mode
	Functional Differences
	Closing a Processing Loop in Reporting Mode
	Closing a Processing Loop in Structured Mode
	Database Reference

	Defining Names and Fields
	Use and Structure of DEFINE DATA Statement
	Use of DEFINE DATA Statement
	Defining Fields within a DEFINE DATA Statement
	Defining Fields in a Separate Data Area
	Structuring a DEFINE DATA Statement Using Level Numbers
	Structuring and Grouping Your Definitions
	Level Numbers in View Definitions
	Level Numbers in Field Groups
	Example of Level Numbers in Group

	Level Numbers in Redefinitions
	Example of Level Numbers in Redefinition

	User-Defined Variables
	Defining User-Defined Variables
	Names of User-Defined Variables
	Length of Variable Names
	Limitations of Variable Names
	Characters Allowed in Variable Names
	First Character of Variable Names
	Special Considerations Regarding the Case of Characters in Variable Names

	Format and Length of User-Defined Variables
	Examples of User-Defined Variables

	User-Defined Constants
	Numeric Constants
	Alphanumeric Constants
	Date and Time Constants
	Hexadecimal Constants
	Logical Constants
	Floating Point Constants
	Attribute Constants
	Defining Named Constants

	Initial Values †and the RESET Statement‡
	Assigning Initial Values to a User-Defined Variable
	Default Initial Values
	RESET Statement

	Redefining Fields
	Using the REDEFINE Option of DEFINE DATA
	Example Program Illustrating the Use of a Redefinition

	Arrays
	Defining Arrays
	Initial Values for Arrays
	Assigning Initial Values to One-Dimensional Arrays
	Assigning Initial Values to Two-Dimensional Arrays
	Assigning the Same Value
	Assigning Different Values

	A Three-Dimensional Array
	Arrays as Part of a Larger Data Structure
	Database Arrays
	Using Arithmetic Expressions in Index Notation
	Arithmetic Support for Arrays
	Examples of Array Arithmetics

	Data Blocks
	Example of Data Block Usage
	Defining Data Blocks
	Block Hierarchies
	
	Explanation

	Accessing Data in an Adabas Database
	Data Definition Modules - DDMs
	Use of Data Definition Modules
	Listing/Displaying DDMs
	Components of a DDM

	Database Arrays
	Multiple-Value Fields
	Periodic Groups
	Referencing Multiple-Value Fields and Periodic Groups
	Multiple-Value Fields Within Periodic Groups
	Referencing Multiple-Value Fields Within Periodic Groups
	Referencing the Internal Count of a Database Array

	DEFINE DATA Views
	Use of Database Views
	Defining a Database View

	Statements for Database Access
	READ Statement
	Use of READ Statement
	Basic Syntax of READ Statement
	Limiting the Number of Records to be Read
	STARTING/ENDING Clauses
	WHERE Clause
	Further Example of READ Statement

	FIND Statement
	Use of FIND Statement
	Basic Syntaxof FIND Statement
	Limiting the Number of Records to be Processed
	WHERE Clause
	Example of WHERE Clause
	IF NO RECORDS FOUND Condition
	Example of IF NO RECORDS FOUND Clause
	Further Examples of FIND Statement

	HISTOGRAM Statement
	Use of HISTOGRAM Statement
	Syntax of HISTOGRAM Statement
	Limiting the Number of Values to be Read
	STARTING/ENDING Clauses
	WHERE Clause
	Example of HISTOGRAM Statement

	Multi-Fetch Clause
	Multi-Fetch on Mainframes
	Use of Multi-Fetch Feature on Mainframes
	Considerations for Multi-Fetch Usage
	Size of the Multi-Fetch Buffer
	Support of TEST DBLOG
	Example: TEST DBLOG List Break-Out

	Multi-Fetch under Windows and UNIX

	Database Processing Loops
	Creation of Database Processing Loops
	Hierarchies of Processing Loops
	Example of Processing Loop Hierarchy

	Example of Nested FIND Loops Accessing the Same File
	Further Examples of Nested READ and FIND Statements

	Database Update - Transaction Processing
	Logical Transaction
	Example of STORE Statement
	Record Hold Logic
	Example of GET Statement
	Backing Out a Transaction
	Restarting a Transaction
	Example of Using Transaction Data to Restart a Transaction

	Selecting Records Using ACCEPT/REJECT
	Statements Usable with ACCEPT and REJECT
	Example of ACCEPT Statement
	Logical Condition Criteria in ACCEPT/REJECT Statements
	Example of ACCEPT Statement with AND Operator
	Example of REJECT Statement with OR Operator
	Further Examples of ACCEPT and REJECT Statements

	AT START/END OF DATA Statements
	AT START OF DATA Statement
	AT END OF DATA Statement
	Example of AT START OF DATA and AT END OF DATA Statements
	Further Examples of AT START OF DATA and AT END OF DATA

	Output of Data
	Layout of an Output Page
	Statements Influencing a Report Layout
	General Layout Example

	Statements DISPLAY and WRITE
	DISPLAY Statement
	WRITE Statement
	Example of DISPLAY Statement
	Example of WRITE Statement
	Column Spacing - SF Parameter and nX Notation
	Tab Setting - nT Notation
	Line Advance - Slash Notation
	Example of Line Advance in DISPLAY Statement
	Example of Line Advance in WRITE Statement
	Further Examples of DISPLAY and WRITE Statements

	Index Notation for Multiple-Value Fields and Periodic Groups
	Use of Index Notation
	Example of Index Notation in DISPLAY Statement
	Example of Index Notation in WRITE Statement

	Page Titles and Page Breaks
	Default Page Title
	Suppress Page Title - NOTITLE Option
	Define Your Own Page Title - WRITE TITLE Statement
	Specifying Text for Your Title
	Specifying Empty Lines after the Title
	Title Justification and/or Underlining

	Logical Page and Physical Page
	Page Size - PS Parameter
	Page Advance
	Page Advance Controlled by EJ Parameter
	Page Advance Controlled by EJECT or NEWPAGE Statements
	Page Advance without Title/Header on Next Page
	Page Advance with End/Top-of-Page Processing

	Eject/New Page when less than n Line Left

	New Page with Title
	Page Trailer - WRITE TRAILER Statement
	Specifying a Page Trailer
	Considering Logical Page Size
	Page Trailer Justification and/or Underlining

	AT TOP OF PAGE Statement
	AT END OF PAGE Statement
	Further Examples
	Examples of WRITE TITLE, WRITE TRAILER, AT TOP OF PAGE, AT END OF PAGE and SKIP Statements
	Example of NOTITLE Option
	Example of NEWPAGE and EJECT Statements

	Column Headers
	Default Column Headers
	Suppress Default Column Headers - NOHDR Option
	Define Your Own Column Headers
	Combining NOTITLE and NOHDR
	Centering of Column Headers - HC Parameter
	Width of Column Headers - HW Parameter
	Filler Characters for Headers - Parameters FC and GC
	Underlining Character for Titles and Headers - UC Parameter
	Suppressing Column Headers - Slash Notation
	Further Examples of Column Headers

	Parameters to Influence the Output of Fields
	Overview of Field-Output-Relevant Parameters
	Leading Characters - LC Parameter
	Insertion Characters - IC Parameter
	Trailing Characters - TC Parameter
	Output Length - AL and NL Parameters
	Sign Position - SG Parameter
	Example Program without Parameters
	Example Program with Parameters AL, NL, LC, IC and TC

	Identical Suppress - IS Parameter
	Example Program without IS Parameter
	Example Program with IS Parameter

	Zero Printing - ZP Parameter
	Empty Line Suppression - ES Parameter
	Example Program without Parameters ZP and ES
	Example Program with Parameters ZP and ES

	Further Examples of Field-Output-Relevant Parameters

	Edit Masks - EM Parameter
	Use of EM Parameter
	Edit Masks for Numeric Fields
	Edit Masks for Alphanumeric Fields
	Length of Fields
	Edit Masks for Date and Time Fields
	Examples of Edit Masks
	Example Program without EM Parameters
	Example Program with EM Parameters

	Further Examples of Edit Masks

	Vertical Displays
	Creating Vertical Displays
	Combining DISPLAY and WRITE
	Tab Notation - T*field
	Positioning Notation x/y
	DISPLAY VERT Statement
	DISPLAY VERT without AS Clause
	DISPLAY VERT AS CAPTIONED and HORIZ
	DISPLAY VERT AS text
	DISPLAY VERT AS text CAPTIONED
	Tab Notation P*field

	Further Example of DISPLAY VERT with WRITE Statement

	Object Types
	What Types of Programming Objects Are There?
	Types of Programming Objects
	Creating and Maintaining Objects

	Data Areas
	Use of Data Areas
	Local Data Area
	Global Data Area
	When are Global Data Areas Initialized?

	Parameter Data Area
	Parameter Defined within DEFINE DATA PARAMETER Statement
	Parameter Defined in Parameter Data Area

	Programs, Subprograms and Subroutines
	A Modular Application Structure
	Multiple Levels of Invoked Objects
	Program
	Program Invoked with FETCH RETURN
	Program Invoked with FETCH

	Subroutine
	Inline Subroutine
	External Subroutine
	Data Available to an Inline Subroutine
	Data Available to an External Subroutine

	Subprogram
	Data Available to a Subprogram

	Processing Flow when Invoking a Routine

	Maps
	Benefits of Using Maps
	Types of Maps
	Creating Maps
	Starting/Stopping Map Processing

	Helproutines
	Invoking Help
	Specifying Helproutines
	Programming Considerations for Helproutines
	Passing Parameters to Helproutines
	Equal Sign Option
	Array Indices
	Help as a Window

	Multiple Use of Source Code - Copycode
	Use of Copycode
	Processing of Copycode

	Documenting Natural Objects - Text
	Use of Text Objects
	Writing Text

	Creating Event Driven Applications - Dialog
	Creating Component Based Applications - Class
	Using Non-Natural Files - Resource
	Further Programming Aspects
	END/STOP Statements
	End of Program - END Statement
	End of Application - STOP Statement

	Conditional Processing - IF Statement
	Structure of IF Statement
	Example of IF Statement
	Nested IF Statements
	Example of Nested IF Statements
	Further Example of IF Statement

	Loop Processing
	Use of Processing Loops
	Limiting Database Loops
	Possible Ways of Limiting Database Loops
	LT Session Parameter
	LIMIT Statement
	Limit Notation
	Priority of Limit Settings

	Limiting Non-Database Loops - REPEAT Statement
	Example of REPEAT Statement
	Terminating a Processing Loop - ESCAPE Statement
	Loops Within Loops
	Example of Nested FIND Statements
	Referencing Statements within a Program
	Example of Referencing with Line Numbers
	Example with Statement Reference Labels

	Control Breaks
	Use of Control Breaks
	AT BREAK Statement
	Control Break Based on a Database Field
	Control Break Based on a User-Defined Variable
	Multiple Control Break Levels

	Automatic Break Processing
	Example of System Functions with AT BREAK Statement
	BEFORE BREAK PROCESSING Statement
	Example of BEFORE BREAK PROCESSING Statement
	User-Initiated Break Processing - PERFORM BREAK PROCESSING Statement
	Example of PERFORM BREAK PROCESSING Statement
	Further Example of AT BREAK Statement

	Data Computation
	Statements Used for Computing Data or Transferring Values
	
	Format of Fields

	COMPUTE Statement
	Statements MOVE and COMPUTE
	Statements ADD, SUBTRACT, MULTIPLY and DIVIDE
	Example of MOVE, SUBTRACT and COMPUTE Statements
	COMPRESS Statement
	Example of COMPRESS and MOVE Statements
	Example of COMPRESS Statement
	Mathematical Functions
	Further Examples of COMPUTE, MOVE and COMPRESS Statements

	System Variables and System Functions
	System Variables
	System Functions
	Example of System Variables and System Functions
	Further Examples of System Variables
	Further Examples of System Functions

	Stack
	Use of Natural Stack
	Stack Processing
	Placing Data on the Stack
	STACK Parameter
	STACK Statement
	FETCH and RUN Statements

	Clearing the Stack

	Processing of Date Information
	Edit Masks for Date Fields and Date System Variables
	Default Edit Mask for Date - DTFORM Parameter
	Date Format for Alphanumeric Representation - DF Parameter
	Examples of DF Parameter with WRITE Statements
	Example of DF Parameter with MOVE Statement
	Example of DF Parameter with STACK Statement
	Example of DF Parameter with INPUT Statement

	Date Format for Output - DFOUT Parameter
	Date Format for Stack - DFSTACK Parameter
	Year Sliding Window - YSLW Parameter
	Combinations of DFSTACK and YSLW

	Date Format for Default Page Title - DFTITLE Parameter

	Designing User Interfaces - Overview
	Screen Design
	Control of Function-Key Lines - Terminal Command %Y
	Format of Function-Key Lines
	Other Display Options

	Positioning of Function-Key Lines
	Cursor-Sensitivity

	Control of the Message Line - Terminal Command %M
	Positioning the Message Line
	Message Line Protection
	Message Line Color

	Assigning Colors to Fields - Terminal Command %=
	Outlining - Terminal Command %D=B
	Statistics Line/Infoline - Terminal Command %X
	Statistics Line
	Infoline

	Windows
	What is a Window?
	Positioning on the Physical Screen
	Positioning on the Logical Page

	DEFINE WINDOW Statement
	INPUT WINDOW Statement
	Message and Function-Key Lines
	Multiple Windows

	Standard/Dynamic Layout Maps
	Standard Layout Maps
	Dynamic Layout Maps

	Multilingual User Interfaces
	Language Codes
	Defining the Language of a Natural Object
	Defining Languages with Alphabetical Map Codes

	Defining the User Language
	Referencing Multilingual Objects
	Programs
	Error Messages
	Edit Masks for Date and Time Fields

	Skill-Sensitive User Interfaces

	Dialog Design
	Field-Sensitive Processing
	*CURS-FIELD and POS†field-name‡

	Simplifying Programming
	System Function POS

	Line-Sensitive Processing
	System Variable *CURS-LINE

	Column-Sensitive Processing
	System Variable *CURS-COL

	Processing Based on Function Keys
	System Variable *PF-KEY

	Processing Based on Function-Key Names
	System Variable *PF-NAME

	Processing Data Outside an Active Window
	System Variable *COM
	Example Usage of *COM
	Positioning the Cursor to *COM - the %T* Terminal Command

	Copying Data from a Screen
	Terminal Commands %CS and %CC
	Selecting a Line from Report Output for Further Processing

	Statements REINPUT/REINPUT FULL
	Object-Oriented Processing
	Natural Command Processor

	Keywords and Reserved Words
	Performing a Keyword Check
	Alphabetical List of Keywords and Reserved Words
	Symbols and Special Characters
	- A -
	- B -
	- C -
	- D -
	- E -
	- F -
	- G -
	- H -
	- I -
	- J -
	- K -
	- L -
	- M -
	- N -
	- O -
	- P -
	- Q -
	- R -
	- S -
	- T -
	- U -
	- V -
	- W -
	- X -
	- Y -
	- Z -

	Natural X
	Introduction to NaturalX
	Why NaturalX?
	Programming Techniques
	Object-Based Programming
	Defining Classes
	Defining Interfaces
	Interface Inheritance

	Developing NaturalX Applications
	Using the Class Builder
	Defining Classes
	Creating a Natural Class Module
	Specifying a Class
	Defining an Interface
	Assigning an Object Data Variable to a Property
	Assigning a Subprogram to a Method
	Implementing Methods

	Using Classes and Objects
	Defining Object Handles
	Creating an Instance of a Class
	Invoking a Particular Method of an Object
	Accessing Properties
	Object Handle - operand1
	operand2
	property-name

	Sample Application

	Distributing NaturalX Applications
	General
	Internal, External and Local Classes
	Internal Classes
	External Classes
	Local Classes

	Globally Unique Identifiers - GUIDs
	Using the Class Builder

